Skip to main content
Log in

Electrical conductivity of α-H x V2O5 (X=0.00-0.27): Dependence of hydrogen concentration and orientation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dependence of the electrical conductivity, σ, on the hydrogen concentration and crystallographic orientation has been investigated using single crystals of HxV2O5, which were grown by the Bridgeman method and doped with hydrogen within the solid solubility in the α phase by the spillover technique. The temperature dependence of σ showed the feature of diffusive hopping of thermally activated electrons above ∼180 K and variable range hopping below ∼180 K. The dependence of σ on the crystallographic orientation was little different from that of V2O5. The change in σ with the hydrogen concentration was not monotonic; σ increases withx up tox }-0.06, but decreases abovex }-0.06. This behaviour can be explained based on the competition between the increase in the carrier density and the depression of the mobility of carriers with increasingx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Murphy, P. A. Christian, F. J. Disalvo andJ. V. Waszczak,Inorg. Chem. 18 (1979) 2800.

    Google Scholar 

  2. A. D. Wadsley,Acta Crystallogr. 8 (1955) 695.

    Google Scholar 

  3. R. P. Ozerov, G. A. Gol'Der andG. S. Zhdanov,Sov. Phys. Crystallogr. 2 (1957) 211.

    Google Scholar 

  4. A. Casalot andP. Hagenmuller,J. Phys. Chem. Solids 30 (1969) 1341.

    Google Scholar 

  5. M. Onoda andH. Nagasawa,J. Phys. Soc. Jpn 52 (1983) 2231.

    Google Scholar 

  6. J. Darriet, R. Von Der Muhull andJ. Gally,Bull. Soc. Fr. Mineral. Cristallogr. 92 (1969) 17.

    Google Scholar 

  7. M. Ganne andM. Tournoux,C. R. Acad. C273 (1971) 975.

    Google Scholar 

  8. J. Gary andM. Pouchard,Bull. Soc. Chem. Fr. (1967) 261.

  9. D. S. Volzhenskii andM. V. Pashkovskii,Sov. Phys. Solid State 11 (1969) 950.

    Google Scholar 

  10. A. A. Vinogradov andA. I. Shelykh,ibid. 13 (1972) 2781.

    Google Scholar 

  11. A. A. Vinogradov, A. A. Andreev andA. I. Shelykh,ibid. 14 (1972) 1077.

    Google Scholar 

  12. J. Haemers, E. Baetens andJ. Vennik,Phys. Status Solidi (a)20 (1973) 381.

    Google Scholar 

  13. R. H. Wallis, N. Sol andA. Zylbersztejn,Solid State Commun. 23 (1977) 539.

    Google Scholar 

  14. H. Kobayashi,Bull. Chem. Soc. Jpn 52 (1979) 1315.

    Google Scholar 

  15. H. Nagasawa, T. Erata, M. Onoda, H. Suzuki, S. Uji, Y. Kanai andS. Kagoshima,Molec. Cryst. Liq. Cryst. 121 (1985) 121.

    Google Scholar 

  16. K. Maruyama andH. Nagasawa,J. Phys. Soc. Jpn 48 (1980) L2159.

    Google Scholar 

  17. M. Onoda, T. Takahashi andH. Nagasawa,Phys. Status Solidi (b)109 (1982) 793.

    Google Scholar 

  18. V. A. Ioffe andI. B. Patrina,Phys. Status Solidi 40 (1970) 389.

    Google Scholar 

  19. A. Frierich, D. Kaplan andN. Sol,Solid State Commun. 25 (1978) 633.

    Google Scholar 

  20. H. Nagasawa, M. Onoda, Y. Kanai andS. Kagoshima,Synth. Metals 19 (1987) 971.

    Google Scholar 

  21. B. K. Chakraverty, M. J. Sienko andJ. Bonnerot,Phys. Rev. B17 (1978) 3781.

    Google Scholar 

  22. C. D. Amarasekara, Y. Miyako, P. H. Keesom andD. Khattack,Phys. Rev. B27 (1983) 978.

    Google Scholar 

  23. N. Kenny, C. R. Kannewurf andD. H. Whitmore,J. Phys. Chem. Solids 27 (1966) 1237.

    Google Scholar 

  24. J. S. Bakos andI. B. Földes, I. Hevesi, J. Kovács, L. Nánai andE. Szil,Appl. Phys. A37 (1985) 247.

    Google Scholar 

  25. A. R. Tourky, Z. Hanafi andK. Al Zewel,Z. Phys. Chem. 242 (1969) 305.

    Google Scholar 

  26. P. W. Anderson,Phys. Rev. Lett. 34 (1975) 953.

    Google Scholar 

  27. A. Alexandrov andJ. Ranninger,Phys. Rev. B23 (1981) 1796.

    Google Scholar 

  28. M. Onoda, T. Takahashi andH. Nagasawa,J. Phys. Soc. Jpn 51 (1982) 3868.

    Google Scholar 

  29. Y. Kanai, S. Kagashima andH. Nagasawa,ibid. 51 (1982) 697.

    Google Scholar 

  30. M. Onoda andH. Nagasawa,Phys. Status Solidi (b)141 (1987) 507.

    Google Scholar 

  31. D. Tinet, H. Estrade-Szwarkopf andJ. J. Fripiat, in “Proceedings of the Miami International Symposium on Metal-Hydrogen Systems”, Miami Beach, FL, April 1981, edited by T. N. Vezvoglu, Pergamon Press (1982) 459.

    Google Scholar 

  32. D. Tinet andJ. J. Fripiat,Rev. Chem. Minéral. 19 (1982) 612.

    Google Scholar 

  33. Idem, J. Chim. Phys. Phys. Chim. Biol. 83 (1986) 809.

    Google Scholar 

  34. P. G. Dickens, A. M. Chippindale, S. J. Hibble andP. Lancaster,Mater. Res. Bull. 19 (1984) 319.

    Google Scholar 

  35. V. C. Srivastava, S. Gupta, K. N. Rai andJ. Kumar,ibid. 23 (1988) 341.

    Google Scholar 

  36. D. Tinet, M. H. Legay, L. Gatineau andJ. J. Fripiat,J. Phys. Chem. 90 (1986) 948.

    Google Scholar 

  37. P. A. Sermon andG. C. Bond,J. Chem. Soc. Faraday Trans. I 72 (1976) 730.

    Google Scholar 

  38. K. Yagisawa, A. Yoshikawa andM. Shimoda,J. Mater. Sci. to be published.

  39. H. C. Montgomery,J. Appl. Phys. 24 (1971) 2971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimoda, M., Yoshikawa, A. & Yagisawa, K. Electrical conductivity of α-H x V2O5 (X=0.00-0.27): Dependence of hydrogen concentration and orientation. J Mater Sci 29, 478–481 (1994). https://doi.org/10.1007/BF01162510

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162510

Keywords

Navigation