Skip to main content
Log in

Fluid inclusion studies of hydrothermally altered archaean granites around the Witwatersrand Basin

Studien an Fluideinschlüssen hydrothermal veranderter archaischer Granite um das Witwatersrand-Becken

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Hydrothermally altered granitic rocks occur along the northern and northwestern edge of what is classically termed the “Witwatersrand Basin”. Pyrite, chalcopyrite, sphalerite, molybdenite, galena, wurtzite and other sulphides were deposited during this hydrothermal alteration, as were uranium and REE-rich nodules of carbonaceous matter and free gold. Heating and freezing data from secondary fluid inclusions in igneous quartz as well as primary fluid inclusions in vein quartz and carbonate indicate that two main groups of aqueous fluid inclusions exist. The first group has a range of final melting temperatures from 0 °C to −9 °C, corresponding to salinities between 0 and 13 equivalent wt.% NaCl. Homogenization occurred at temperatures between 130 °C and 230 °C. The second group of inclusions generally have final melting temperatures between −14 °C and −26 °C, with salinities ranging between 12 and 30 equivalent wt.% NaCl. Homogenization temperatures range from 120 °C to about 170 °C. The low initial melting temperatures of -60°C to −35°C and SEM-EDX analyses of encrustations formed after evaporation of fluid in opened inclusions indicate as additional components Ca, Cl and S. Rare clathrate melting in both types of fluids indicate the presence of CO2, CH4 or some other clathrate compound. The low salinity fluids are interpreted to be of a meteoric, seawater or metamorphic origin, whereas the highly saline fluids are thought to be connate brines or highly evolved formation waters.

Zusammenfassung

Hydrothermal veränderte granitische Gesteine kommen am nördlichen und nordwest-lichen Rand von dem vor, was man klassisch als “Witwatersrand-Becken” bezeichnet. Während dieser hydrothermalen Umwandlung wurden Pyrit, Kupferkies, Zinkblende, Molybdänglanz, Bleiglanz, Wurtzit und andere Sulfide abgesetzt, ebenso Uran- und SEE-reiche Knollen aus kohliger Substanz und Freigold. Erhitzungs- und Ausfrierdaten von sekundären Fluideinschlüssen in Gesteinsquarz, ebenso wie von primären Fluideinschlüssen in Gangquarz und Karbonat weisen darauf hin, daß zwei Hauptgruppen von wäßrigen Fluideinschlüssen existieren. Der Bereich der finalen Schmelztemperaturen der ersten Gruppe liegt zwischen 0 °C und −9 °C, was einer Salinität zwischen 0 und 13 äquiv. Gew.-% NaCl entspricht. Homogenisierung erfolgte bei Temperaturen zwischen 130 °C und 230 °C. Die zweite Gruppe von Einschlüssen hat im allgemeinen finale Schmelztemperaturen zwischen −14 °C und −26 °C, mit Salinitäten, die sich zwischen 12 und 30 äquiv. Gew.-% NaCl bewegen. Die Homogenisierungstemperaturen variieren von 120 °C bis ungefähr 170 °C. Die niedrigen initialen Schmelztemperaturen von −60 °C bis −35 °C und SEM-EDX-Analysen von Inkrustationen, die sich nach der Verdunstung der Flüssigkeit in geöffneten Einschlüssen bilden, weisen auf Ca, Cl und S als weitere Bestandteile. Gelegentliches Clathratschmelzen in beiden Typen von Fluiden zeigt die Anwesenheit von CO2, CH, und einigen anderen Clathratbildnern. Die niedrigsalinaren Fluide werden als von meteorischem, Seewasser oder metamorphem Ursprung gedeutet, während die hochsalinaren Fluide als “con.nate brines” oder sehr gereifte Formationswässer angesehen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderton DHM, Rankin AH (1983) The character and evolution of hydrothermal fluids associated with the kaolinised St. Austell granite, SW England. J Geol Soc London 147: 297–310

    Google Scholar 

  • Armstrong RA, Compston W, Retiéf EA, Welke HJ (1986) Ages and isotopic evolution of the Ventersdorp volcanics. Geocongress 86, Extended Abstracts, Geol Soc South Afr, pp 89–93

  • Barton ES, Barton JM (Jr), Callow MJ, Allsopp HL, Evans IB, Welke HJ (1986) Emplacement ages and implication for the source region of granitoid rocks associated with the Witwatersrand Basin. Geocongress 86, Extended Abstracts, Geol Soc South Afr, pp 93–99

  • Barton JM (Jr), Hallbauer DK, Klemd R (dy1988) and timing of tectonism associated with the Ventersdorp Contact Reef on the West Wits Line. Ventersdorp Contact Reef Symposium, Geol Soc South Afr, pp 59–66

  • Behr H-J, Gerler J (1987) Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany—a study by neutron activation analysis. Chem Geol 61: 65–77

    Google Scholar 

  • Bottrell SH, Yardley BWD (1988) The composition of a primary granite-derived ore fluid from S.W. England determined by fluid inclusion analysis. Geochim Cosmochim Acta 52: 585–588

    Google Scholar 

  • Brown PE, Lamb HA (1986) Mixing of H2O-CO2 in fluid inclusions: geobarometry and Archaean gold deposits. Geochim Cosmochim Acta 50: 847–852

    Google Scholar 

  • Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In:Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Reinhardt & Wilson, pp 34–76

  • Burrows DR, Wood PC, Thomas AV, Spooner ETC (1986) A magmatic origin for Archaean gold-quartz vein mineralization in the Mink lake granodiorite stock, NW Ontario. Geocongress 86, Extended Abstracts, Geol Soc South Afr, pp 283–287

  • Burruss RC (1981) Analyses of phase equilibria n C-O-H-S fluid inclusions. In:Hollister LS, Crawford ML (eds) Short course in fluid inclusions: applications to petrology. Miner Assoc Canada, pp 39–7

  • Collins PLF (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ Geol 74: 1435–1444

    Google Scholar 

  • Crawford MA (1981) Fluid inclusions in metamorphic rocks—low and medium grade. In:Hollister LS, Crawford MA (eds) Short course in fluid inclusions: applications to petrology. Miner Assoc Canada, pp 278–304

  • Eugster HP, Skippen GB (1967) Igneous and metamorphic reactions involving gas equilibria. In:Abelson PH (ed) Research in geochemistry, 2. Wiley and Sons, pp 492–521

  • Frape SK, Fritz P, Natt RH (1984) Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48: 1617–1622

    Google Scholar 

  • Giusti L (1988) U-Pb isotopic data for sulfides of the Varkenskraal granite (western Transvaal, South Africa) and their bearing on the age and origin of uranium mineralization in the Witwatersrand Basin. Isotope Geoscience 8: 311–329

    Google Scholar 

  • Green HW (1972) A CO2 charged atmosphere. Nature 238: 2–5

    Google Scholar 

  • Haas JL (1970) An equation for the density of vapour-saturated NaCl-H2O solutions from 75 °C to 325 °C. Am J Sci 269: 489–493

    Google Scholar 

  • Hallbauer DK (1983) Geochemistry and fluid inclusions in detrital minerals as guides to their provenance and distribution. Spec Publ Geol South Afr, pp 39–57

  • Klemd R, von Gehlen K (1986) A provenance model for the Witwatersrand gold and uranium mineralization and its implication in the recognition of gold distribution patterns in the reefs. Geocongress 86, Extended Abstracts, Geol Soc South Afr, pp 133–139

  • Hanor JS (1980) Dissolved methane in sedimentary brines: Potential effect on the PVT properties of fluid inclusions. Econ Geol 75: 603–609

    Google Scholar 

  • Hedenquist JW, Henley R W (1985) Effect of CO2 on freezing point depression measurements of fluid inclusions—evidence from active systems and implications for epithermal ore deposition. Econ Geol 80: 1379–1406

    Google Scholar 

  • Heyen G, Ramboz C, Dubessy J (1982) Simulation des equilibres de phases dans le systeme CO2-CH4 en gasseous de 50°C et de 100 bar, application aux inclusions fluides. Cen Res Acad Sci 294 ser. II: 203–206

    Google Scholar 

  • Hollister LS, Crawford ML, Roedder E, Burruss RC, Spooner ETC, Touret J (1981) Practical aspects of microthermometry. In: Hollister LS, Crawford ML (eds) Short course in fluid inclusions. Miner Assoc Canada, pp 278–304

  • Klemd R (1987) A mineralogical and mineral chemical study of Archaean granitic rocks bordering the Witwatersrand Basin. Unpubl. PhD thesis, Rand Afrikaans University, Johannesburg, 263pp

    Google Scholar 

  • ——,Hallbauer DK (1987) Hydrothermally altered peraluminous Archaean granites as a provenance model for the Witwatersrand sediments. Mineral Deposita 22: 227–235

    Google Scholar 

  • Barton JM (Jr) (1986) Styles of hydrothermal alteration in granitoid rocks along the north-western margin of the Witwatersrand Basin. Geocongress 86, Extended Abstracts, Geol Soc South Afr, pp 149–154

  • ——, ——, —— (1987) Fluid inclusion evidence for unusual alteration processes in Archaean granitic rocks along the northwestern margin of the Witwatersrand Basin. Symposium Vol: Granites and Associated Mineralization. Int Symp Salvador, Brasil, pp 289–293

    Google Scholar 

  • Konnerup-Madsen J (1979) Fluid inclusions in quartz from deep seated granitic intrusions south Norway. Lithos 12: 13–23

    Google Scholar 

  • Lemmlein GC (1956) Formation of fluid inclusions and their use in geological thermometry. Geochemistry 6: 630–642

    Google Scholar 

  • Nel LT (1935) The geology of the Klerksdorp-Ventersdorp area, an explanation of the geological map. Geol Surv South Afr, 159pp

  • Nesbitt BE, Murowchick IB, Muehlenbachs K (1986) Dual origins of lode gold deposits in the Canadian Cordillera. Geology 14: 506–509

    Google Scholar 

  • Nicolaysen LO, Burger AJ, Liebenberg WR (1962) Evidence for the extreme age of certain minerals for the Dominion Reef conglomerate and the underlying granite in the Western Transvaal. Geochim Cosmochim Acta 26: 15–23

    Google Scholar 

  • Phillips GN (1987) Metamorphism of the Witwatersrand gold fields: conditions during peak metamorphism. J Metamorphic Geol 5: 307–322

    Google Scholar 

  • Potter KW, Clynne MA, Brown DL (1978) Freezing point depression of aqueous sodium chloride solutions. Econ Geol 73: 284–285

    Google Scholar 

  • Rankin AH, Alderton DHM (1985) Fluids in granites from southwest England. In: High heat production granites, hydrothermal circulation, and ore genesis. Inst Min Metall, London, pp 287–299

    Google Scholar 

  • Robb LJ, Meyer M (1985) The nature of the Witwatersrand hinterland: conjectures on the source area problem. Econ Geol Res Unit Inform Circ Univ Witwatersrand, Johannes-burg 178, 25pp

    Google Scholar 

  • Roedder PE (1984) Fluid inclusions. Miner Soc Amer Rev Miner 12, 644pp

  • SACS (South African Committee For Stratigraphy) (1980) Stratigraphy of South Africa. Handbook Geol Soc South Afr 8, 689pp

  • Scott SD, Barnes HL (1972) Sphalerite-wurtzite equilibria and stoichiometry. Geochim Cosmochim Acta 36: 1275–1295

    Google Scholar 

  • Swanenberg HEC (1979) Phase equilibria in carbonic systems and their application to freezing studies of fluid inclusions. Contrib Mineral Petrol 68: 303–306

    Google Scholar 

  • Swanson SE (1979) The effect of CO2 on phase equilibria and crystal growth in the system KAlSi3O8-NaAlSi3O8-CaAl2Si2O8-H2O-CO2 to 800 bars. Am J Sci 279: 703–720

    Google Scholar 

  • Taylor ML, Kesler SE, Cloke PL, Kelly WC (1983) Fluid inclusions evidence for fluid mixing, Mascot-Jefferson City Zinc District Tennesse. Econ Geol 78: 1425–1439

    Google Scholar 

  • van Niekerk CB, Burger AJ (1969) Lead isotopic data relating to the age of the Dominion Lava. Trans Geol Soc South Afr 72: 37–45

    Google Scholar 

  • Werre RW, Bodnar RJ, Bethke PM, Barton PB (Jr (1979) A novel gas flow fluid inclusion heating freezing stage. Geol Soc Amer Abstr Work Progr 11: 539

    Google Scholar 

  • Whitney JA (1975) Vapour generation in a quartz monzonite magma: A synthetic model with applications to porphyry copper deposits. Econ Geol 70: 346–358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemd, R., Hallbauer, D.K. & Barton, J.M. Fluid inclusion studies of hydrothermally altered archaean granites around the Witwatersrand Basin. Mineralogy and Petrology 40, 39–56 (1989). https://doi.org/10.1007/BF01162468

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162468

Keywords

Navigation