Skip to main content
Log in

New Lie-algebraic structures in nonlinear problems of quantum optics and laser physics

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

New Lie-algebraic structures (polynomial deformations of Lie algebras) are revealed in some problems of quantum optics and laser physics. Specifically, deformations of oscillator algebras due to extensions of unitary algebras by their symmetric and skew-symmetric tensors are shown to be algebras of dynamic symmetry (ADS) in models of n-photon processes with internal symmetries. Similarly, deformed algebras sud(2) are found as ADS in the context of generalized Dicke models and frequency conversion models. We also briefly discuss some possible schemes of employing the results to solving physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. V. P. Karassiov and L. A. Shelepin, Tr. FIAN,144, 124–140 (1984).

    Google Scholar 

  2. I. A. Malkin and V. I. Man'ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  3. A. M. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin (1986).

    Google Scholar 

  4. J. R. Klauder and B.-S. Skagerstam, Coherent States, Applications in Physics and Mathematical Physics, World Science, Singapore (1985).

    Google Scholar 

  5. V. P. Karassiov, Tr. FIAN,191, 120–132 (1989).

    Google Scholar 

  6. V. P. Karassiov, S. V. Prants, and V. I. Puzyrevsky, in: Interaction of Electromagnetic Field with Condensed Matter, World Science, Singapore (1990), pp. 3–48.

    Google Scholar 

  7. V. P. Karassiov, J. Sov. Laser Res.,12, 147–164 (1991).

    Google Scholar 

  8. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Addison Wesley, Reading Massachusetts (1981).

    Google Scholar 

  9. P. Jordan. Z. Phys.,94, 531–535 (1935).

    Google Scholar 

  10. J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, D. Reidel, Dordrecht (1984).

    Google Scholar 

  11. V. V. Dodonov, V. I. Man'ko and S. M. Chumakov, Tr. FIAN,176, 57–95 (1986).

    Google Scholar 

  12. M. Kozierowski, A. A. Mamedov, and S. M. Chumakov, Phys. Rev.,A42, 1762–1766 (1990).

    Google Scholar 

  13. S. P. Nikitin and A. V. Masalov, Quantum Opt.,3, 105–113 (1991).

    Google Scholar 

  14. P. V. Elyutin and D. N. Klyshko, Phys. Lett., A149, 241–247 (1990).

    Google Scholar 

  15. P. D. Drummond and M. D. Reid, Phys. Rev., A41, 3930–3949 (1990).

    Google Scholar 

  16. J. Katriel, A. I. Solomon, G. D'Ariano, et al., J. Opt. Soc. Am.,B4, 1728 (1987).

    Google Scholar 

  17. C. Zachos, in: Symmetries in Science V (eds. B. Gruber, L. C. Biedenharn and H. Doebner), Plenum Press, N.Y. (1991), p. 593.

    Google Scholar 

  18. A. B. Zamolodchikov, Teor. Mat. Fiz.,65, 347–359 (1985).

    Google Scholar 

  19. F. A. Bais, P. Bouwknegt, K. Schoutens, et al., Nucl. Phys., B304, 348–370; 370–391 (1988).

    Google Scholar 

  20. M. Rocek, Phys. Lett. B,255, 554–557 (1991).

    Google Scholar 

  21. V. P. Karassiov, Lect. Notes Phys.,382, 493–504 (1991).

    Google Scholar 

  22. P. P. Kulish and E. V. Damaskinsky, J. Phys., A23, L 415 (1990).

    Google Scholar 

  23. M. Chaichian, D. Elinas, and P. Kulish, Phys. Rev. Lett.,65, 980–983 (1990).

    Google Scholar 

  24. F. J. Narganes-Quijano. J. Phys., A24, 1699 (1991).

    Google Scholar 

  25. O. F. Gal'bert, Ya. I. Granovskii, and A. S. Zhedanov, Phys. Lett., A153, 177–180 (1991).

    Google Scholar 

  26. J. Katriel, A. I. Solomon, J. Phys., A24, 2093–2105 (1991).

    Google Scholar 

  27. E. Celeghini, M. Rasetti, and G. Vitiello, Phys. Rev. Lett.,66, 2056–2059 (1991).

    Google Scholar 

  28. V. P. Karassiov, Preprint FIAN, No. 102 (1991).

  29. R. Howe, Proc. Symp. Pure Math. AMS,33, 275 (1979).

    Google Scholar 

  30. C. Quesne, Int. J. Mod. Phys., A6, 1567–1589 (1991).

    Google Scholar 

  31. R. A. Fischer, M. M. Nieto, and V. D. Sandberg, Phys. Rev. D29, 1107–1110 (1984).

    Google Scholar 

  32. J. Katriel, M. Rasetti, and A. I. Solomon, Phys. Rev., D35, 1248–1254 (1987).

    Google Scholar 

  33. C. Chevalley, Theory of Lie Groups, Princeton Univ. Press (1946).

  34. H. Bacry, J. Math. Phys.,31, 2061–2077 (1990).

    Google Scholar 

  35. T. Holstein and H. Primakoff, Phys. Rev.,58, 1098–1113 (1940).

    Google Scholar 

  36. R. A. Brandt and O. W. Greenberg, J. Math. Phys.,10, 1168–1176 (1969).

    Google Scholar 

  37. T. L. Curtright and C. K. Zachos, Phys. Lett. B243, 237–244 (1990).

    Google Scholar 

  38. J. M. Dixon and J. A. Tuszynski, Phys. Lett., A155, 107–112 (1990).

    Google Scholar 

Download references

Authors

Additional information

Based on materials of the Second International Wigner Symposium (Goslar, Germany, July 16–20, 1991) and the International Workshop “Squeezing, Groups, and Quantum Mechanics” (Baku, Azerbaijan, September 16–20, 1991).

Lebedev Physics Institute, Leninsky prospect 53, Moscow 117924, Russia. Published as Preprint No. 138 (1991) of the Lebedev Physics Institute (in English).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karassiov, V.P. New Lie-algebraic structures in nonlinear problems of quantum optics and laser physics. J Russ Laser Res 13, 188–195 (1992). https://doi.org/10.1007/BF01121107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01121107

Keywords

Navigation