Skip to main content
Log in

Lattice uniformities and modular functions on orthomodular lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

It is shown that the lattice of all exhaustive lattice uniformities on an orthomodular latticeL is isomorphic to the centre of a natural completion (of a quotient) ofL, and is thus a complete Boolean algebra. This is applied to prove a decomposition theorem for exhaustive modular functions on orthomodular lattices, which generalizes Traynor's decomposition theorem [14].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajupov, S. A., Čilin, V. J., Chadžijev, Z., and Sarymsakov, T. A. (1983)Ordered Algebras, FAN, Taškent.

    Google Scholar 

  2. Drewnowski, L. (1972) Topological rings of sets, continuous set functions, integration I, II, III,Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys. 20, 269–276, 277–286, 439–445.

    Google Scholar 

  3. Drewnowski, L. (1973) Decomposition of set functions,Studia Math. 48, 23–48.

    Google Scholar 

  4. Fleischer, I. and Traynor, T. (1982) Group-valued modular functions,Algebra Universalis 14, 287–291.

    Google Scholar 

  5. Kalmbach, G. (1983)Orthomodular Lattices, Academic Press, London.

    Google Scholar 

  6. Palko, V. (1989) Topologies on quantum logics induced by measures,Math. Slovaca 39, 175–189.

    Google Scholar 

  7. Pták, P. and Pulmannova, S. (1991)Orthomodular Structures as Quantum Logics, Vol. 44, Kluwer Academic Publishers, London.

    Google Scholar 

  8. Pulmannova, S. and Riečanova, Z. (1989) A topology on quantum logics,Proc. Amer. Math. Soc. 106, 891–897.

    Google Scholar 

  9. Pulmannova, S. and Riečanova, Z. (1991) Logics with separating sets of measures,Math. Slovaca 41, 167–177.

    Google Scholar 

  10. Pulmannova, S. and Riečanova, Z. (1991)Compact Topological Orthomodular Lattices, Contributions to general algebra7, 277–282; Teubner-Verlag, Stuttgart.

    Google Scholar 

  11. Pulmannova, S. and Rogalewicz, V. (1991) Orthomodular lattices with almost orthogonal sets of atoms,Comment. Math. Univ. Carolinae 32, 423–429.

    Google Scholar 

  12. Riečanova, Z. (1989) Topologies in atomic quantum logics,Acta Universitatis Carolinae — Math. et Phys. 30, 143–148.

    Google Scholar 

  13. Riečanova, Z. (1988) Topology in a quantum logic induced by a measure, in Ch. Bandt, J. Flachsmeyer, and S. Lotz (eds),Proc. of the Conference Topology and Measure V, pp. 126–130.

  14. Traynor, T. (1976) The Lebesgue decomposition for group-valued set functions,Trans. Amer. Math. Soc. 220, 307–319.

    Google Scholar 

  15. Weber, H. (1982) Unabhängige Topologien, Zerlegung von Ringtopologien,Math. Z. 180, 379–393.

    Google Scholar 

  16. Weber, H. (1984) Topological Boolean rings. Decomposition of finitely additive set functions,Pac. J. Math. 110, 471–495.

    Google Scholar 

  17. Weber, H. (1984) Group- and vector-valueds-bounded contents, inMeasure Theory (Oberwolfach, 1983), Lecture Notes in Mathematics, Vol.1089, Springer-Verlag, pp. 181–198.

  18. Weber, H. (1991/1993) Uniform lattices I: A generalization of topological Riesz spaces and topological Boolean rings; Uniform lattices II: Order continuity and exhaustivity,Ann. Mat. Pura Appl. 160, 347–370;164, 133–158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Keimel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, H. Lattice uniformities and modular functions on orthomodular lattices. Order 12, 295–305 (1995). https://doi.org/10.1007/BF01111744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01111744

Mathematics Subject Classifications (1991)

Key words

Navigation