Skip to main content
Log in

Hemodynamic influences upon the variance of disposition residence time distribution of drugs

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A recirculation model of drug disposition is used to interpret the physiological meaning of the variance of residence time distribution (VDRT). The pharmacokinetic parameter VDRT is determined by the means and variances of the transfer times across the organs, as well as by the respective blood flow and extraction ratios. The model is illustrated for a specified distribution of organ transit times assuming flow limited mass transport. Based on data from the literature, the influence of changes in cardiac output and its regional distribution on the variance of recirculation and residence times, respectively, is predicted for lidocaine. Thereby the study is focused on the effect of certain cardiovascular states (shock, hypoxia, exercise, sympathomimetic drugs). Unlike pharmacokinetic parameters derived from the zeroth and first curve moments, the relative residence time dispersion is found to be affected by a redistribution of the blood flow among the noneliminating organs. The equations presented allow a simple and rapid calculation of clinically relevant pharmacokinetic parameters from physiological and physicochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics.J. Pharmacokin. Biopharm. 6:547–558 (1978).

    Article  CAS  Google Scholar 

  2. L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution.J. Pharm. Sci. 68:1071–1974 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. M. Weiss and W. Förster. Pharmacokinetic model based on circulatory transport.Eur. J. Clin. Pharmacol. 16:287–293 (1979).

    Article  Google Scholar 

  4. J. M. Van Rossum and C. A. M. Van Ginneken. Pharmacokinetic systems dynamics. In E. Gladtke and H. Heimann (eds.),Pharmacokinetics, G. Fischer Verlag, Stuttgart, 1980.

    Google Scholar 

  5. M. Weiss. Residence time and accumulation of drugs in the body.Int. J. Clin. Pharmacol. 19:82–85 (1981).

    CAS  Google Scholar 

  6. G. R. Wilkinson. Pharmacokinetics of drug disposition: hemodynamic considerations.Annu. Rev. Pharmacol. 15:11–27 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. N. L. Benowitz and W. Meister. Pharmacokinetics in patients with cardiac failure.Clin. Pharmacokin. 1:389–405 (1976).

    Article  CAS  Google Scholar 

  8. R. L. Williams and L. Z. Benet. Drug pharmacokinetics in cardiac and hepatic disease.Annu. Rev. Pharmacol. Toxicol. 20:389–413 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man. I. Prediction by a perfusion model.Clin. Pharmacol. Ther. 16:87–98 (1974).

    CAS  PubMed  Google Scholar 

  10. K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Article  CAS  Google Scholar 

  11. M. Weiss. Moments of physiological transit time distributions and the time course of drug disposition in the body.J. Math. Biol,15:305–318 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. D. J. Cutler. A linear recirculation model for drug disposition.J. Pharmacokin. Biopharm. 7:101–116 (1979).

    Article  CAS  Google Scholar 

  13. D. P. Vaughan and I. Hope. Applications of a recirculatory stochastic pharmacokinetic model: limitations of compartmental models.J. Pharmacokin. Biopharm. 7:207–225 (1979).

    Article  CAS  Google Scholar 

  14. G. W. Roberts, K. B. Larson, and E. E. Spaeth. The interpretation of mean transit time measurement for multiphase tissue systems.J. Theor. Biol. 39:447–475 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1357 (1968).

    Article  CAS  PubMed  Google Scholar 

  16. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans.J. Pharm. Sci. 66:1679–1683 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–135 (1973).

    Article  CAS  Google Scholar 

  19. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  20. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man. II. Effect of hemorrhage and sympathomimetic drug administration.Clin. Pharmacol. Ther. 16:99–109 (1974).

    CAS  PubMed  Google Scholar 

  21. H. Adachi, H. W. Strauss, H. Ochi, and H. N. Wagner, Jr. The effect of hypoxia on the regional distribution of cardiac output in the dog.Circ. Res. 39:314–391 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. S. F. Vatner and M. Pagani. Cardiovascular adjustments to exercise: hemodynamics and mechanisms.Progr. Cardiovasc. Dis. 19:91–108 (1976).

    Article  CAS  Google Scholar 

  23. P. D. Thomson, K. L. Melmon, J. A. Richardson, K. Cohn, W. Steinbrunn, R. Cudihee, and M. Rowland. Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans.Ann. Intern. Med. 78:499–508 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. T. J. Knopp, W. A. Dobbs, J. F. Greenleaf, and J. B. Bassingthweighte. Transcoronary intravascular transport functions obtained via a stable deconvolution technique.Ann. Biomed. Eng. 4:44–59 (1976).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. L. D. Homer and A. Small. A unified theory for estimation of cardiac output, volumes of distribution and renal clearances from indicator dilution curves.J. Theor. Biol. 64:535–550 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. L. D. Homer and P. K. Weathersby. The variance of the distribution of traversal times in a capillary bed.J. Theor. Biol. 87:349–377 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. W. G. Kramer, R. P. Lewis, T. C. Cobb, W. F. Forester, J. A. Visconti, L. A. Wanke, H. G. Boxenbaum, and R. H. Reuning. Pharmacokinetics of digoxin: Comparison of a two- and a three-compartment model in man.J. Pharmacokin. Biopharm. 2:299–312 (1974).

    Article  CAS  Google Scholar 

  28. M. Weiss. Modelling of initial distribution of drugs following intravenous bolus injection.Eur. J. Clin. Pharmacol.,24:121–126 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M. Hemodynamic influences upon the variance of disposition residence time distribution of drugs. Journal of Pharmacokinetics and Biopharmaceutics 11, 63–75 (1983). https://doi.org/10.1007/BF01061768

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061768

Key words

Navigation