Skip to main content
Log in

Active surface area in oxide electrodes by overpotential deposited oxygen species for the oxygen evolution reaction

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical active surface area at oxide electrodes of Pt and electrodeposited Ni, Co and Ni20Co80 alloys was evaluated in 5m KOH solutions based on the charge for electrochemical desorption of a monolayer of overpotential deposited oxygen (OPD O) species. Thein situ technique empllyed for the charge measurement involves galvanostatic charging (OPD O) adsorption), followed by simple discharging (OPD O desorption) experiments. It is observed that surface area estimated by this new technique for the oxidized surfaces of the metals studied here are consistent with those from a.c. impedance spectroscopy. The activity of the metal towards the oxygen evolution reaction (OER) is also discussed in terms of their active surface area estimated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Trasatti,in ‘Advances in Electrochemical Science and Engineering’, vol 2, (edited by H. Gerischer and C. W. Tobias), VCH Press, Weinheim (1992) p. 1.

    Google Scholar 

  2. H. Angerstein-Kozlowska,in ‘Comprehensive Treatise of Electrochemistry’, vol. 9 (edited by E. Yeager, J. O'M Bockris, B. E. Conway and S. Sarangapani), Plenum Press, NY (1984) p. 15.

    Google Scholar 

  3. A. T. Kühn, ‘Techniques in Electrochemistry, Corrosion, and Metal Finishing’, John Wiley & Sons, New York (1987) p. 3.

    Google Scholar 

  4. J. C. K. Ho and D. L. Piron,J. Electrochem. Soc. 142 (1995) 1144.

    Google Scholar 

  5. A. I. Fedorova and A. N. Frumkin,J. Phys. Chem. USSR 27 (1953) 247.

    Google Scholar 

  6. B. E. Conway and T. C. Liu,Langmuir 6 (1990) 268.

    Google Scholar 

  7. A. Damjanovic, A. Dey, and J. O'M Bockris,Electrochim. Acta 11 (1966) 791.

    Google Scholar 

  8. J. O'M. Bockris,J. Chem. Phys. 24 (1956) 817.

    Google Scholar 

  9. B. E. Conway and T. C. Liu,J. Chem. Soc., Faraday Trans. 1 83 (1987) 1063.

    Google Scholar 

  10. B. E. Conway and P. L. Bourgault,Can. J. Chem. 37 (1959) 292.

    Google Scholar 

  11. B. E. Conway and T. C. Liu,Ber. Bunsenges. Phys. Chem. 91 (1987) 461.

    Google Scholar 

  12. A. N. Frumkin,J. Res. Inst. Catalysis (Hokkaido Univ.)15 (1967) 61.

    Google Scholar 

  13. J. Haenen, W. Visscher and E. Barendrecht,Electrochim. Acta 31 (1986) 1541.

    Google Scholar 

  14. I. A. Raj and K. I. Vasu,J. Appl. Electrochem. 20 (1990) 32.

    Google Scholar 

  15. L. Brossard,Int. J. Hydrogen Energy 18 (1993) 455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, J.C.K., Piron, D.L. Active surface area in oxide electrodes by overpotential deposited oxygen species for the oxygen evolution reaction. J Appl Electrochem 26, 515–521 (1996). https://doi.org/10.1007/BF01021975

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021975

Keywords

Navigation