Skip to main content
Log in

Abstract

The lactic acid (L.A.) concentration in blood after a 20 sec supramaximal exercise (2.5×\(\dot V_{O_2 \max } \)) has been measured in 4 subjects in the following experimental conditions:

  1. a)

    during the resting period following the supramaximal exercise (rest recovery) and

  2. b)

    during a 3 min exercise at\(\dot V_{O_2 \max } \) immediately following the supramaximal effort (exercise recovery). The L.A. concentration in blood has been found to be consistently higher (on the average by 16.9 mg%) in case (b). Since in such condition it may be reasonably assumed that the oxygen taken up by the subject is completely utilized for the exercise, the increase of blood lactate is considered evidence for the occurrence of anaerobic recovery,i.e. of a partial resynthesis of the high energy phosphate stores of the muscle (GP = ATP+PC) depleted during the supramaximal effort, at the expense of anaerobic glycolysis.

From the increase in blood L.A. concentration during the anaerobic recovery period, the amount of L.A. produced has been estimated together with the amount of GP resynthesized. The latter corresponds to 4 to 7 mMoles/kg of muscle,i.e. to about 25% of the average GP concentration in resting human muscle. The finalistic implication of this mechanism is the prompt restoration of the potential maximal power of the muscle even in the absence of O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosoli, G., Cerretelli, P.: The anaerobic recovery of frog muscle. Pflügers Arch.345, 131–143 (1973)

    Google Scholar 

  2. Cerretelli, P., di Prampero, P. E., Ambrosoli, G.: High energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle. Amer. J. Physiol.222, 1021–1026 (1972)

    Google Scholar 

  3. Cerretelli, P., Sikand, R., Farhi, L. E.: Readjustement in cardiac output and gas exchange during onset of exercise and recovery. J. appl. Physiol.21, 1345–1350 (1966)

    Google Scholar 

  4. Davies, C. T. M., Knibbs, A. V., Musgrove, J.: The effect of recovery exercise on the removal of lactic acid from blood. J. Physiol. (Lond.)196, 61–62P (1968)

    Google Scholar 

  5. Diamant, B., Karlsson, J., Saltin, B.: Muscle tissue lactate after maximal exercise in man. Acta physiol. scand.72, 383–384 (1968)

    Google Scholar 

  6. di Prampero, P. E.: The alactic oxygen debt: its power, capacity and efficiency. In: Muscle metabolism during exercise (B. Pernow, B. Saltin, Eds.), pp. 371–382. New York-London: Plenum Press 1971

    Google Scholar 

  7. di Prampero, P. E., Peeters, L., Margaria, R.: Alactic O2 debt and lactic acid production after supramaximal exercise in man. J. appl. Physiol.34, 628–632 (1973)

    Google Scholar 

  8. Embden, G., Hirsch-Kauffmann, H., Lehnartz, E., Deuticke, H. J.: Über den Verlauf der Milchsäurebildung beim Tetanus. Hoppe-Seylers Z. physiol. Chem.151, 209–231 (1926)

    Google Scholar 

  9. Embden, G., Lehnartz, E.: Über den zeitlichen Verlauf der Milchsäurebildung bei der Muskelkontraktion. Erwiderung auf die vorstehenden Bemerkungen von O. Meyerhof. Hoppe-Seylers Z. physiol. Chem.178, 311–315 (1928)

    Google Scholar 

  10. Embden, G., Lehnartz, E., Hentschel, H.: Der zeitliche Verlauf der Milchsäurebildung bei der Muskelkontraktion. Hoppe-Seylers Z. physiol. Chem.165, 255–278 (1927)

    Google Scholar 

  11. Gercken, G.: Die quantitative enzymatische Dehydrierung vonl(+)-Lactat für die Mikroanalyse. Hoppe-Seylers Z. physiol. Chem.320, 180–186 (1960)

    Google Scholar 

  12. Gisolfi, C., Robinson, S., Turrel, E. S.: Effects of aerobic work performed during recovery from exhaustive work. J. appl. Physiol.21, 1767–1772 (1966)

    Google Scholar 

  13. Hartree, W.: The analysis of the delayed heat production of muscle. J. Physiol. (Lond.)75, 273–287 (1932)

    Google Scholar 

  14. Hubbard, J. L.: The effect of exercise on lactate metabolism. J. Physiol. (Lond.)231, 1–18 (1973)

    Google Scholar 

  15. Margaria, R., Cerretelli, P., di Prampero, P. E., Massari, C., Torelli, G.: Kinetics and mechanism of oxygen debt contraction in man. J. appl. Physiol.18, 371–377 (1963)

    Google Scholar 

  16. Margaria, R., Cerretelli, P., Mangili, F.: Balance and kinetics of anaerobic energy release during strenuous exercise in man. J. appl. Physiol.19, 623–628 (1964)

    Google Scholar 

  17. Margaria, R., Moruzzi, G.: Il ristoro anaerobico del muscolo. Arch. Fisiol.37, 203–216 (1937)

    Google Scholar 

  18. Nachmansohn, D.: Über den Zerfall der Kreatinphosphorsäure in Zusammenhang mit der Tätigkeit des Muskels. I. Biochem. Z.196, 73–97 (1929)

    Google Scholar 

  19. Nachmansohn, D.: Über den Zerfall der Kreatinphosphorsäure in Zusammenhang mit der Tätigkeit des Muskels. II. Biochem. Z.208, 237–256 (1929)

    Google Scholar 

  20. Newman, E. V., Dill, D. B., Edwards, H. T., Webster, F. A.: The rate of lactic acid removal in exercise. Amer. J. Physiol.118, 457–462 (1937)

    Google Scholar 

  21. Sacks, J.: The absence of anaerobic recovery in mammalian muscle. Amer. J. Physiol.129, 761–764 (1939)

    Google Scholar 

  22. Taylor, H. L., Buskirk, E., Henschel, A.: Maximal oxygen intake as an objective measure of cardiorespiratory performance. J. appl. Physiol.8, 73–80 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerretelli, P., Ambrosoli, G. & Fumagalli, M. Anaerobic recovery in man. Europ. J. Appl. Physiol. 34, 141–148 (1975). https://doi.org/10.1007/BF00999926

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999926

Key words

Navigation