Skip to main content
Log in

Human brain tubulin purification: Decrease in soluble tubulin with age

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The soluble tubulin of human cerebral cortex, as assessed by [3H]colchicine binding of the 100,000g supernatant fraction, decreases drastically with age, 75 percent from age 0 to age 90. There is also a considerably lower concentration of high molecular weight proteins in the soluble fraction of postmortem human cerebral cortex than in that of nonhuman species. Human brain tubulin can be polymerized into microtubules with DEAE-dextran. The DEAE-dextran induced microtubules are stable to cold temperature (4°) and calcium. However, in the presence of 1 M glutamate, the microtubules become cold labile and depolymerize at 4°. Thus we have developed a novel method for purifying polymerization competent tubulin from fresh or frozen human cerebral cortex. Human brain tubulin purified by our novel method is very similar to tubulin from the brains of other mammals in molecular weight, amino acid composition, polymerization-depolymerization parameters, and structural dimensions of the microtubules formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soifer, D. (ed.) 1975. Ann. NY Acad. Sci., Vol. 253: The biology of cytoplasmic microtubules.

  2. Butler, R. N. 1978. The National Institute of Mental Health Study. Pages 53–58,in Katzman, R., Terry, R. D., andBick, K. L. (eds.), Alzheimer's Disease: Senile Demential and Related Disorders (Aging Vol. 7), Raven Press, New York.

    Google Scholar 

  3. Terry, R. D., andDavies, P. 1980. Dementia of the Alzheimer's type. Ann. Rev. Neurosci. 3:77–95.

    PubMed  Google Scholar 

  4. Grundke-Iqbal, I., Johnson, A. B., Wisniewski, H. M., Terry, R. D., andIqbal, K. 1979. Evidence that Alzheimer neurofibrillary tangles originate from neurotubules. Lancet 1:578–580.

    PubMed  Google Scholar 

  5. Ghetti, B. 1979. Induction of neurofibrillary degeneration following treatment with maytansine in vivo. Brain Research 163:9–19.

    PubMed  Google Scholar 

  6. Eng, L. F., Pratt, D., andWilson, L. 1974. Biochemical and pharmacological comparison of microtubule protein from human and chick brain. Neurobiology 4:301–308.

    PubMed  Google Scholar 

  7. Yen, S. C., Gaskin, F., andTerry, R. D. 1981. Immunocytochemical studies of neurofibrillary tangles. Am. J. Pathol. 104:77–89.

    PubMed  Google Scholar 

  8. Dahl, D., Selkoe, D. J., Pero, R. T., andBignami, A. 1982. Immunostaining of neurofibrillary tangles in Alzheimer's senile dementia with a neurofilament antiserum. J. Neurosci. 2:113–119.

    PubMed  Google Scholar 

  9. Shelanski, M. L., Gaskin, F., andCantor, C. R. 1973. Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. 70:765–768.

    PubMed  Google Scholar 

  10. Weisenberg, R. V., andTimasheff, S. N. 1970. Aggregation of microtubule subunit protein: effect of divalent cations, colchicine and vinblastine. Biochem. 9:4110–4116.

    Google Scholar 

  11. Timasheff, S. N., andGrisham, L. M. 1980. In vitro assembly of cytoplasmic microtubules. Ann. Rev. Biochem. 49:565–591.

    PubMed  Google Scholar 

  12. Redman, C. M., Banerjee, D., Howell, K., andPalade, G. E. 1975. Colchicine inhibition of plasma protein release from rat hepatocytes. J. Cell. Biol. 66:42–59.

    PubMed  Google Scholar 

  13. Berk, B. C., andHinkle, P. M. 1980. Thyroid and brain microtubules: a comparison. J. Biol. Chem. 255:3186–3193.

    PubMed  Google Scholar 

  14. Wilson, L. 1975. Microtubules as drug receptors—pharmacological properties of microtubule protein. Ann. NY Acad. Sci. 253:213–231.

    PubMed  Google Scholar 

  15. Weber, K., andOsborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244:4406–4412.

    PubMed  Google Scholar 

  16. Lee, J. C., andTimasheff, S. N. 1975. The reconstitution of microtubules from purified calf brain tubulin. Biochem. 14:5183–5187.

    Google Scholar 

  17. Goodwin, T. W., andMorton, R. A. 1946. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem. J. 40:628–632.

    Google Scholar 

  18. Haworth, W. M. 1915. A new method of preparing alkylated sugars. Chem. Soc. London J. 107:8–17.

    Google Scholar 

  19. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  20. Erickson, H. P., andVoter, W. A. 1976. Polycation-induced assembly of purified tubulin. Proc. Natl. Acad. Sci. 73:2813–2817.

    PubMed  Google Scholar 

  21. Gaskin, F., Cantor, C. R., andShelanski, M. L. 1974. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 89:737–758.

    PubMed  Google Scholar 

  22. Hamel, E., del Campo, A. A., Lowe, M. C. Waxman, P. G., andLin, C. M. 1982. Effects of organic acids on tubulin polymerization and associated guanosine 5′-triphosphate hydrolysis. Biochem. 21:503–509.

    Google Scholar 

  23. Bryan, J., andWilson, L. 1971. Are cytoplasmic microtubules heteropolymers? Proc. Natl. Acad. Sci. 68:1762–1766.

    PubMed  Google Scholar 

  24. Eipper, B. A. 1974. Properties of rat brain tubulin. J. Biol. Chem. 249:1407–1416.

    PubMed  Google Scholar 

  25. Feit, H., andBarondes, S. H. 1970. Colchicine-binding activity in particulate fractions of mouse brain. J. Neurochem. 17:1355–1364.

    PubMed  Google Scholar 

  26. Job, D., Rauch, C. T., Fisher, E. H., andMargolis, R. L. 1982. Recycling of coldstable microtubules: evidence that cold stability is due to stoichiometric polymer blocks. Biochem. 21:509–515.

    Google Scholar 

  27. Lockwood, A. H. 1979. Molecules in mammalian brain that interact with the colchicine site on tubulin. Proc. Natl. Acad. Sci. 76:1184–1188.

    PubMed  Google Scholar 

  28. Sherline, P., Schiavone, K., andBrocato, S. 1979. Endogenous inhibitor of colchicine-tubulin binding in rat brain. Science 205:593–595.

    PubMed  Google Scholar 

  29. Bryan, J., Nagle, B. W., andDoenges, K. H. 1975. Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc. Natl. Acad. Sci. 72:3570–3574.

    PubMed  Google Scholar 

  30. Asnes, C. F., andWilson, L. 1979. Isolation of bovine brain microtubule protein without glycerol: polymerization kinetics change during purification cycles. Anal. Biochm. 98:64–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Some aspects of this work have been published as an abstract in 1981. Fed. Proc. 40:1548.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Sc.B., Hwang, S., Rustan, T.D. et al. Human brain tubulin purification: Decrease in soluble tubulin with age. Neurochem Res 10, 1–18 (1985). https://doi.org/10.1007/BF00964768

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964768

Keywords

Navigation