Skip to main content
Log in

Symmetry and bifurcation in three-dimensional elasticity. Part II

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ℬ ⊂ ℝ3 :

reference configuration

TXℬ:

vectors in ℝ3 based at the point X ∈ ℬ

φ:ℬ → ℝ3, x = φ(X):

deformation

u : ℬ → ℝ3 :

displacement for the linearized theory

e = 1/2 [∇u + (∇u)T]:

strain

C :

all deformations φ

F = Dφ:

deformation gradient = derivative of φ

FT :

transpose of F

C = FTF:

Cauchy-Green tensor

W:

Stored energy function

\(P = \frac{{\partial W}}{{\partial F}}\) :

first Piola-Kirchhoff stress

\(S = 2\frac{{\partial W}}{{\partial C}}\) :

second Piola-Kirchhoff stress

\(A = \frac{{\partial P}}{{\partial F}}\) :

elasticity tensor

\(C = \frac{{\partial S}}{{\partial C}}\) :

(second) elasticity tensor

c = 2C¦φ=I :

classical elasticity tensor

I or I or 1:

identity map on ℝ3 or ℬ

l = (B, τ):

a (dead) load

ℒ:

all loads with total force zero

L(TXℬ, ℝ3):

all linear maps of TXℬ to ℝ3

L(TXℬ, ℝ)*:

linear maps of L(TXℬ, ℝ) to ℝ

sym (TXℬ, TXℬ):

symmetric linear maps of TXℬ to TX

SO(3):

Q∈ L(ℝ 3, 3)¦ Q T Q = I, det Q = 1

ℝℙ2 :

real projective 2-space; lines through (0, 0, 0) in ℝ3

M3 :

L(ℝ3, ℝ3)

sym:

symmetric elements of M3

skew = so(3):

skew symmetric elements of M3

\(\hat \upsilon \) :

infinitesimal rotation about the axis v

e :

equilibrated loads

k: ℒ → M3 :

astatic load map

A = k(l):

astatic load for a load l

j = (k ¦(ker k:)⊥)-1 :

non-singular part of k

Skew = j (skew):

skew viewed in load space

Sym = j (sym):

sym viewed in load space

Φ:C→ℒ:

Φ(φ) = (-DIV P,P · N)

U=T I C :

the space of linearized displacements

U sym :

orthogonal complement to Skew inU

L:U sym→ℒ:

linearized operator: L = DΦ(I)

le :

the equilibrated part of l according to the decomposition ℒ = ℒe ⊕ Skew

ul (U 0Q = uQl 0):

linearized solution : Lul = le

〈, 〉:

L2 pairing

B(l1, l2) = 〈l1, ul 2〉:

〈c(∇ul 1), ∇ul 2〉 Betti form

SA :

Q's in SO(3) that equilibrate A

ϱ:

tubular neighborhood for SO(3) inC

V(φ) = ∫W(F)dV — λ〈l,φ〉:

potential function for the static problem

Vϱ = V ∘ ϱ:

potential function in new coordinates

f(Q) = Vϱ(Q, φQ):

reduced potential function on SO(3)

\(\mathop f\limits^ \sim \left( Q \right) = -< Q^T ,l > - \frac{\lambda }{2}< c\left( {\nabla u_Q^0 } \right)\nabla u_Q^0 > + O\left( {\lambda ^2 } \right) + O\left( {\lambda \left| {l - l_o } \right|} \right)\) :

second reduced potential on\(S_{A_o } \)

References

  • S. A.Adeleke [1980]. Stability of some states of plane deformation,Arch. Rational Mech. Anal. 72, 243–263.

    Google Scholar 

  • J. M.Arms, J. E.Marsden & V.Moncrief [1981]. Symmetry and bifurcation of momentum maps,Comm. Math. Phys. 78, 455–478.

    Google Scholar 

  • J. M.Ball & D.Schaeffer [1982]. Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead load tractions (preprint).

  • G.Capriz & P.Podio Guidugli [1974]. On Signorini's perturbation method in nonlinear elasticity,Arch. Rational Mech. Anal. 57, 1–30.

    Google Scholar 

  • D. R. J.Chillingworth, J. E.Marsden & Y. H.Wan [1982]. Symmetry and Bifurcation in three dimensional elasticity, Part I,Arch. Rational Mech. Anal. 80, 295–331.

    Google Scholar 

  • E.Dancer [1980]. On the existence of bifurcating solutions in the presence of symmetries.Proc. Roy. Soc. Edinb. 85 A, 321–336.

    Google Scholar 

  • G.Fichera [1972].Existence theorems in elasticity, Handbuch der Physik, Bd. VIa/2, 347–389, C.Truesdell, ed., Berlin Heidelberg New York: Springer.

    Google Scholar 

  • N.Golubitsky & D.Schaeffer [1979]. Imperfect bifurcation in the presence of symmetry,Commun. Math. Phys. 67, 205–232.

    Google Scholar 

  • G.Grioli [1962].Mathematical Theory of Elastic Equilibrium, Ergebnisse der Angew. Math. #67, Berlin Heidelberg New York: Springer.

    Google Scholar 

  • D.Gromoll & W.Meyer [1969]. On differentiable functions with isolated critical points,Topology,8, 361–369.

    Google Scholar 

  • J. K.Hale & P. Z.Taboas [1980]. Bifurcation near degenerate families,Journal of Applicable Anal. 11, 21–37.

    Google Scholar 

  • J. E.Marsden & Y. H.Wan [1983]. Linearization stability and Signorini Series for the traction problem in elastostatics.Proc. Roy. Soc. Edinburgh (to appear).

  • M.Reeken [1973]. Stability of critical points under small perturbations,Manuscripta Math. 69–72.

  • S.Signorini [1930]. Sulle deformazioni termoelastiche finite,Proc. 3rd Int. Cong. Appl. Mech. 2, 80–89.

    Google Scholar 

  • F.Stoppelli [1955]. Sulla sviluppabilitá in serie di potenze di un parametro delle soluzioni delle equazioni dell'elastostatica isoterma,Ricerche Mat. 4, 58–73.

    Google Scholar 

  • F.Stoppelli [1958]. Sull'esistenza di soluzioni delle equazioni dell'elastostatica isoterma nel caso di sollecitazioni dotate di assi di equilibrio,Richerce Mat. 6 (1957) 241–287,7 (1958) 71–101, 138–152.

    Google Scholar 

  • C.Truesdell & W.Noll [1965].The Nonlinear Field Theories of Mechanics, Handbuch der Physik Bd. III/3, S.Flügge, ed., Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Y. H.Wan [1983]. The traction problem for incompressible materials (preprint).

  • A.Weinstein [1978]. Bifurcations and Hamilton's principle,Math. Zeit. 159, 235–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.Antman

J. E.Marsden's research was supported in part by the U.S. National Science Foundation under Grant MCS-81-07086, by the Miller Institute, and by a contract from the Department of Energy, DE-AT03-82ER12097. Y. H.Wan's research was partially supported by the U.S. National Science Foundation under Grant MCS-81-02463 and the Department of Energy, Contract DE-AT03-82ER12097. D. R. J.Chillingworth's research was partially supported by the U. K. Science Research Council through the University of Warwick, 1980.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chillingworth, D.R.J., Marsden, J.E. & Wan, Y.H. Symmetry and bifurcation in three-dimensional elasticity. Part II. Arch. Rational Mech. Anal. 83, 363–395 (1983). https://doi.org/10.1007/BF00963840

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963840

Keywords

Navigation