Skip to main content
Log in

Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The identities and taxonomic diversity of the endosymbiotic methanogens from the anaerobic protozoaMetopus contortus, Metopus striatus, Metopus palaeformis, Trimyema sp. andPelomyxa palustris were determined by comparative analysis of their 16S ribosomal RNA sequences. Fluorescent oligonucleotide probes were designed to bind to the symbiont rRNA sequences and to provide direct visual evidence of their origins from methanogenic archaea contained within the host cells. Confocal microscopy was used to analyze the morphology of the endosymbionts in whole cells ofMetopus palaeformis, Metopus contortus, Trimyema sp. andCyclidium porcatum. The endosymbionts are taxonomically diverse and are drawn from three different genera;Methanobacterium, Methanocorpusculum andMethanoplanus. In every case the symbionts are closely related to, but different from, free-living methanogens for which sequences are available. It is thus apparent that symbioses have been formed repeatedly and independently. Ciliates which are unrelated to each other (Trimyema sp. andMetopus contortus) may contain symbionts which are closely related, and congeneric ciliates (Metopus palaeformis andM. contortus) may contain symbionts which are distantly related to each other. This suggests that some of the symbiotic associations must be relatively recent. For example, at least one of the symbioses inMetopus must postdate the speciation ofM. palaeformis andM. contortus. Despite this,Metopus contortus, Trimyema sp., Cyclidium porcatum and their respective endosymbionts show sophisticated morphological interactions which probably facilitate the exchange of materials between the partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achenbach-Richter L, Gupta R, Zillig, W & Woese, CR (1988) Rooting the archaebacterial tree: the pivotal role ofThermococcus celer in archaebacterial evolution. System. Appl. Microbiol. 14: 231–240

    Google Scholar 

  • Boone DR & Mah RA (1989)Methanobacteriaceae. In: Staley JT, Bryant MP, Pfennig N & Holt, JG (Ed) Bergey's Manual of Systematic Bacteriology (pp.2175–2178). Williams and Wilkins, Baltimore

    Google Scholar 

  • Burggraf S, Stetter KO, Rouviere P & Woese CR (1991) Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. System. Appl. Microbiol. 14: 346–351

    Google Scholar 

  • Corliss JO (1979) The Ciliated Protozoa. Pergamon Press, Oxford

    Google Scholar 

  • DeLong EF, Wickham GS & Pace NR (1989) Phylogenetic stains: ribosomal RNA based probes for the identification of single cells. Science 243: 1360–1363

    Google Scholar 

  • Embley TM (1991) The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett. Appl. Microbiol. 13: 171–174

    Google Scholar 

  • Embley TM, Finlay BJ & Dyal P (1992a) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic position of the anaerobic ciliateMetopus palaeformis and its archaeobacterial symbiont. J. Gen. Microbiol. 138: 1479–1487

    Google Scholar 

  • Embley TM, Finlay BJ & Brown S (1992b) RNA sequence analysis shows that the symbionts in the ciliateMetopus contortus are polymorphs of a single methanogen species. FEMS Microbiol. Lett. 97: 57–62

    Google Scholar 

  • Esteban G, Guhl BE, Clarke KJ, Finlay BJ & Embley TM (1993)Cyclidium porcatum n.sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Europ J Protistol (in press)

  • Fenchel T (1993) Methanogenesis in marine shallow water sediments: the quantitative role of anaerobic protozoa with endosymbiotic methanogenic bacteria. Ophelia 37: 67–82.

    Google Scholar 

  • Fenchel T & Finlay BJ (1990) Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol. Ecol. 74: 269–276

    Google Scholar 

  • Fenchel T & Finlay BJ (1991) Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host. J. Protozool. 38: 18–22

    Google Scholar 

  • Fenchel T & Finlay BJ (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch. Microbiol. 157: 475–480

    Google Scholar 

  • Finlay BJ & Fenchel T (1989) Hydrogenosomes in some anaerobic ciliates resemble mitochondria. FEMS Microbiol. Lett. 65: 311–314

    Google Scholar 

  • Finlay BJ & Fenchel T (1991a) An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol. Ecol. 85: 169–180

    Google Scholar 

  • Finlay BJ & Fenchel T (1991b) Polymorphic bacterial symbionts in the anaerobic ciliated protozoonMetopus contortus. FEMS Microbiol. Lett. 79: 187–190

    Google Scholar 

  • Finlay BJ & Fenchel T (1992a) An anaerobic ciliate as a natural chemostat for the growth of endosymbiotic methanogens. Europ. J. Protistol. 28: 127–137

    Google Scholar 

  • Finlay BJ & Fenchel T (1992b) Methanogens and other bacteria as symbionts of free-living anaerobic ciliates. Symbiosis 14: 375–390.

    Google Scholar 

  • Finlay BJ, Embley TM & Fenchel T (1993) A new polymorphic methanogen, closely related toMethanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliateTrimyema sp. J. Gen. Microbiol. 139: 371–378

    Google Scholar 

  • Jones WJ, Nagle DP & Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51: 135–177

    Google Scholar 

  • Jukes TH & Cantor CR (1969) Evolution of protein molecules. In: Munro, HN (Ed) Mammalian Protein Metabolism (pp 21–132). Academic Press, New York

    Google Scholar 

  • Holler S & Pfennig N (1991) Fermentation products of the anaerobic ciliateTrimyema compressum in monoxenic cultures. Arch. Microbiol. 156: 327–334

    Google Scholar 

  • Lechner K, Wich G & Bock A (1985) The nucleotide sequence of the 16s rRNA gene and flanking regions fromMethanobacterium formicium: on the phylogenetic relationship between methanogenic and halophilic archaebacteria. System. Appl. Microbiol. 6: 157–163

    Google Scholar 

  • Muller M (1988). Energy metabolism of protozoa without mitochondria. Ann. Rev. Microbiol. 42: 465–488

    Google Scholar 

  • Neefs J-M, Van de Peer Y, De Rijk P, Goris A & De Wachter R (1991). Compilation of small ribosomal subunit RNA sequences. Nucl. Acid. Res. Supplement 19: 1987–2015

    Google Scholar 

  • Olsen GJ, Larson N & Woese CR (1991) The ribosomal RNA data base project. Nucl. Acid. Res. Supplement 19: 2017–2021

    Google Scholar 

  • Rouviere P, Mandelco L, Winker S & Woese CR (1992) A detailed phylogeny of theMethanomicrobiales. System. Appl. Microbiol. 15: 363–371

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB & Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Google Scholar 

  • Saitou N & Nei M (1987) The neighbour joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    Google Scholar 

  • Stahl DA & Amman RI (1991) Development and application of nucleic acid probes in bacterial systematics. In: Stackebrandt E & Goodfellow M (Ed) Nucleic Acid Techniques in Bacterial Systematics (pp. 205–248), John Wiley: Chichester

    Google Scholar 

  • van Bruggen JJA, Stumm CK & Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch. Microbiol. 136: 89–95

    Google Scholar 

  • van Bruggen JJA, Zwart KB, van Assema RM, Stumm CK & Vogels GD (1984)Methanobacterium formicium, an endosymbiont of the anaerobic ciliateMetopus striatus McMurrich. Arch. Microbiol. 139: 1–7

    Google Scholar 

  • van Bruggen JJA, Zwart KB, Hermans JGF, van Hove EM, Stumm CK & Vogels GD (1986) Isolation and characterisation ofMethanoplanus endosymbiosus sp. nov. an endosymbiont of the marine sapropelic ciliateMetopus contortus Quennerstedt. Arch. Microbiol. 144: 367–374

    Google Scholar 

  • Wagener S, Bardele CF & Pfennig N (1990) Functional integration ofMethanobacterium formicicum into the anaerobic ciliateTrimyema compressum. Arch. Microbiol. 153: 496–501

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271

    Google Scholar 

  • Yang DC, Kaine BP & Woese CR (1985) The phylogeny of archaebacteria. System. Appl. Microbiol. 6: 251–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Embley, T.M., Finlay, B.J. Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie van Leeuwenhoek 64, 261–271 (1993). https://doi.org/10.1007/BF00873086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873086

Key words

Navigation