Skip to main content
Log in

Punctuated equilibria and phyletic gradualism: Even partners can be good friends

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The allegedly alternative theories of Phyletic Gradualism and Punctuated Equilibria are examined as regards the nature of their differences. The explanatory value of both models is determined by establishing their actual connection with reality. It is concluded that they are to be considered complementary rather than mutually exclusive at all levels of infraspecific, specific, and supraspecific evolution. So, in order to be described comprehensively, the pathways of evolution require at least two distinct models, each based on a discrete range of real phenomena. [Phyletic Gradualism; Punctuated Equilibria; evolutionary theories; divergence models; additive speciation; microevolution; macroevolution; anagenesis.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ax, P. (1987). The Phylogenetic System — The Systematization of Organisms on the Basis of Their Phylogenesis. New York, John Wiley and Sons.

    Google Scholar 

  • Bidault, M. (1971). Variation et Spéciation chez les Végétaux Supérieurs. Paris, Doin Ed.

    Google Scholar 

  • Bock, W.J. (1970). Microevolutionary sequences as a fundamental concept in macroevolutionary models. Evolution 24: 704–722.

    Google Scholar 

  • Bock, W.J. (1979). The synthetic explanation of macroevolutionary change — a reductionistic approach. In: J.H. Schwartz and H.B. Rollins, eds. Models and Methodologies in Evolutionary Theory. Bull. Carnegie Mus. nat. Hist. 13: 20–69.

  • Bookstein, F.L., P.D. Gingerich, and A.C. Kluge (1978). Hierarchical linear modeling of the tempo and mode of evolution. Paleobiol. 4: 120–134.

    Google Scholar 

  • Borror, D.J., and D.M. DeLong (1971). An Introduction to the study of Insects. Third ed. New York, Holt, Rinehart and Winston.

    Google Scholar 

  • Brown, W.L., Jr. (1987). Punctuated equilibrium excused: the original examples fail to support it. Biol. J. Linn. Soc. Lond. 31: 383–404.

    Google Scholar 

  • Bush, G.L. (1975a). Modes of animal speciation. A. Rev. Ecol. Syst. 6: 339–364.

    Google Scholar 

  • Bush, G.L. (1975b). Sympatric speciation in phytophagous parasitic insects. In: P.W. Price, ed., Evolutionary Strategies of Parasitic Insects and Mites, 187–206. New York, Plenum Press.

    Google Scholar 

  • Charlesworth, B., R. Lande, and M. Slatkin (1982). A neo-Darwinian commentary on macroevolution. Evolution 36: 474–498.

    Google Scholar 

  • Cracraft, J. (1984). The terminology of allopatric speciation. Syst. Zool. 33: 115–116.

    Google Scholar 

  • Cronin, J.E., N.T. Boaz, C.B. Stringer, and Y. Rak (1981). Tempo and mode in hominid evolution. Nature, Lond. 292: 113–122.

    Google Scholar 

  • Darwin, C. (1959). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London, John Murray.

    Google Scholar 

  • Dobzhansky, T. (1937). Genetics and the Origin of Species. New York, Columbia Univ. Press.

    Google Scholar 

  • Dobzhansky, T. (1941). Genetics and the Origin of Species. Second, revised ed. New York, Columbia Univ. Press.

    Google Scholar 

  • Dobzhansky, T. (1951). Genetics and the Origin of Species. Third, revised ed. New York, Columbia Univ. Press.

    Google Scholar 

  • Dobzhansky, T. (1970). Genetics and the Evolutionary Process. New York, Columbia Univ. Press.

    Google Scholar 

  • Douglas, M.E., and J.C. Avise (1982). Speciation rates and morphological divergence in fishes: tests of gradual versus rectangular modes of evolutionary change. Evolution 36: 224–232.

    Google Scholar 

  • Eldredge, N. (1979). Alternative approaches to evolutionary theory. In: J.H. Schwartz and H.B. Rollins, eds., Models and Methodologies in Evolutionary Theory. Bull. Carnegie Mus. nat. Hist. 13: 7–19.

  • Eldredge, N. (1989). Macroevolutionary Dynamics-Species, Niches, and Adaptive Peaks. New York, McGraw-Hill.

    Google Scholar 

  • Eldredge, N., and J. Cracraft (1980). Phylogenetic Patterns and the Evolutionary Process-Method and Theory in Comparative Biology, New York, Columbia Univ. Press.

    Google Scholar 

  • Eldredge, N., and S.J. Gould (1972). Punctuated equilibria: an alternative to phyletic gradualism. In: T.J.M. Schopf, ed., Models in Paleobiology, 82–115. San Francisco, Freeman, Cooper and Cy.

    Google Scholar 

  • Endler, J.A. (1977). Geographic Variation, Speciation, and Clines. Princeton, Princeton Univ. Press.

    Google Scholar 

  • Ferrari, F.D. (1984). A copepodologist's thoughts about punctuated equilibria. Crustaceana 47: 220–224.

    Google Scholar 

  • Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Oxford, Clarendon Press.

    Google Scholar 

  • Fryer, G., P.H. Greenwood, and J.F. Peake (1983). Punctuated equilibria, morphological stasis and the paleontological documentation of speciation: a biological appraisal of a case history in an African lake. Biol. J. Linn. Soc. Lond. 20: 195–205.

    Google Scholar 

  • Futuyma, D.J. (1979). Evolutionary Biology. Sunderland, MA, Sinauer Assoc.

    Google Scholar 

  • Gingerich, P.D. (1974). Stratigraphic record of Early EoceneHyopsodus and the geometry of mammalian phylogeny. Nature, Lond. 248: 107–109.

    Google Scholar 

  • Gingerich, P.D. (1976). Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Am. J. Sci. 276: 1–28.

    Google Scholar 

  • Gingerich, P.D. (1978). Evolutionary transition from ammoniteSubprionocylus toReesidites—punctuated or gradual? Evolution 32: 454–456.

    Google Scholar 

  • Gingerich, P.D. (1984). Punctuated equilibria-where is the evidence? Syst. Zool. 33: 335–338.

    Google Scholar 

  • Gittenberger, E. (1988). Sympatric speciation in snails; a largely neglected model. Evolution 42: 826–828.

    Google Scholar 

  • Gittenberger, E. (1991). What about non-adaptive radiation? Biol. J. Linn. Soc. Lond. 43: 263–272.

    Google Scholar 

  • Goldschmidt, R. (1940). The Material Basis of Evolution. New Haven, Yale Univ. Press.

    Google Scholar 

  • Gould, S.J. (1977). Ontogeny and Phylogeny. Cambridge, MA, Belknap Press.

    Google Scholar 

  • Gould, S.J. (1980). Is a new and general theory of evolution emerging? Paleobiol. 6: 119–130.

    Google Scholar 

  • Gould, S.J. (1983). The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Scientia 118: 135–157.

    Google Scholar 

  • Gould, S.J., and N. Eldredge (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiol. 3: 115–151.

    Google Scholar 

  • Gould, S.J., and N. Eldredge (1986). Punctuated equilibrium at the third stage. Syst. Zool. 35: 143–148.

    Google Scholar 

  • Grant, V. (1963). The Origin of Adaptations. New York, Columbia Univ. Press.

    Google Scholar 

  • Grant, V. (1971). Plant Speciation. New York, Columbia Univ. Press.

    Google Scholar 

  • Greenwood, P.H. (1974). The cichlid fishes of Lake Victoria, East Africa: the biology and evolution of a species flock. Bull. Br. Mus. nat. Hist. (Zool.) Suppl. 6: 1–134.

    Google Scholar 

  • Greenwood, P.H. (1984). African cichlids and evolutionary theories. In: A.A. Echelle, and I. Kornfields, eds., Evolution of Fish Species Flocks, 141–154. Orono, Univ. of Maine at Orono Press.

    Google Scholar 

  • Gupta, A.P., ed. (1979). Arthropod Phylogeny. New York, Van Nostrand Reinhold.

    Google Scholar 

  • Haldane, J.B.S. (1932). The Causes of Evolution. London, Longmans, Green and Co.

    Google Scholar 

  • Hallam, A. (1978). How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiol. 4: 16–25.

    Google Scholar 

  • Häuser, C.L. (1987). The debate about the biological species concept—a review. Z. zool. Syst. Evolutionsf. 25: 241–257.

    Google Scholar 

  • Hecht, M.K. (1974). Morphological transformation, the fossil record, and the mechanisms of evolution: a debate. Part I, the statement and the critique. Evol. Biol. 7: 295–303.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic Systematics. Urbana, Univ. Illinois Press.

    Google Scholar 

  • Hennipman, E. (1977). A Monograph of the Fern GenusBolbitis (Lomariopsidaceae). Leiden, Thesis.

  • Hoffman, A. (1983). Punctuated versus gradual mode of evolution—a reconsideration. Evol. Biol. 15: 411–436.

    Google Scholar 

  • Huxley, J.S. (1942). Evolution—the Modern Synthesis. London, Allen and Unwin.

    Google Scholar 

  • Huxley, J.S. (1957). The three types of evolutionary process. Nature, Lond. 180: 454–455.

    Google Scholar 

  • Huxley, J.S. (1958). Evolutionary processes and taxonomy with special reference to grades. Uppsala Univ. Arsskr. 1958: 21–39.

    Google Scholar 

  • Jägersten, G. (1972). Evolution of the Metazoan Life Cycle—a Comprehensive Theory. London, Academic Press.

    Google Scholar 

  • Janson, C.H. (1992). Measuring evolutionary constraints: a Markov model for phylogenetic transitions among seed dispersal syndromes. Evolution 46: 136–158.

    Google Scholar 

  • Kellogg, D.E. (1975). The role of phyletic change in the evolution ofPseudocubus vema (Radiolaria). Paleobiol. 1: 359–370.

    Google Scholar 

  • Kitts, D.B. (1974). Paleontology and evolutionary theory. Evolution 28: 458–472.

    Google Scholar 

  • Lemen, C.A., and P.W. Freeman (1989). Testing macroevolutionary hypotheses with cladistic analysis: evidence against rectangular evolution. Evolution 43: 1538–1554.

    Google Scholar 

  • Levinton, J.S. (1983). Stasis in progress: the empirical basis of macroevolution. A. Rev. Ecol. Syst. 14: 103–137.

    Google Scholar 

  • Levinton, J.S., and C.M. Simon (1980). A critique of the punctuated equilibria model and implications for the detection of speciation in the fossil record. Syst. Zool. 29: 130–142.

    Google Scholar 

  • Lewis, H. (1966). Speciation in flowering plants. Science, N.Y. 152: 167–172.

    Google Scholar 

  • Lewontin, R.C. (1974). The Genetic Basis of Evolutionary Change. New York, Columbia Univ. Press.

    Google Scholar 

  • Matsuda, R. (1979). Abnormal metamorphosis and arthropod evolution. In: A.P. Gupta, ed., Arthropod Phylogeny, 137–256, New York, Van Nostrand Reinhold.

    Google Scholar 

  • Maynard Smith, J. (1962). Disruptive selection, polymorphism and sympatric speciation. Nature, Lond. 195: 60–62.

    Google Scholar 

  • Maynard Smith, J. (1966). Sympatric speciation. Am. Natural. 100: 637–650.

    Google Scholar 

  • Maynard Smith, J. (1987). Darwinism stays unpunctured. Nature, Lond. 330: 516.

    Google Scholar 

  • Mayr, E. (1940). Speciation phenomena in birds. Am. Natural. 74: 249–278.

    Google Scholar 

  • Mayr, E. (1942). Systematics and the Origin of Species from the Viewpoint of a Zoologist. New York, Columbia Univ. Press. (reprinted 1964 by Dover Publs., New York).

    Google Scholar 

  • Mayr, E. (1951). Speciation in birds. Progress report on the years 1938–1950. In: S. Hörstadius, ed., Proceedings of the Xth International Ornithological Congress Uppsala June 1950, 91–131. Uppsala, Almqvist and Wiksell.

    Google Scholar 

  • Mayr, E. (1954). Change of genetic environment and evolution. In: J. Huxley, A.C. Hardy, and E.B. Ford, eds., Evolution as a Process, 157–180. London, Allen and Unwin.

    Google Scholar 

  • Mayr, E. (1963). Animal Species and Evolution. Cambridge, MA, Belknap Press.

    Google Scholar 

  • Mayr, E. (1970). Populations, Species, and Evolution — An Abridgment of Animal Species and Evolution. Cambridge, MA, Belknap Press.

    Google Scholar 

  • Mayr, E. (1980). Prologue: some thoughts on the history of the Evolutionary Synthesis. In: E. Mayr and W.B. Provine, eds., The Evolutionary Synthesis-Perspectives on the Unification of Biology, 1–48. Cambridge, MA, Harvard Univ. Press.

    Google Scholar 

  • Mayr, E. (1982a). The Growth of Biological Thought-Diversity, Evolution, and Inheritance. Cambridge, MA, Belknap Press.

    Google Scholar 

  • Mayr, E. (1982b). Speciation and macroevolution. Evolution 36: 1119–1132.

    Google Scholar 

  • Mayr, E. (1982c). Processes of speciation in animals. In: D. Barigozzi, ed., Mechanisms of Speciation, 1–19. New York, A.R. Liss. (also by: Publ. Acad. naz. Lincei, Roma).

    Google Scholar 

  • Mayr, F., and M.B. Provine, eds. (1980). The Evolutionary Synthesis-Perspectives on the Unification of Biology. Cambridge, MA, Harvard Univ. Press.

    Google Scholar 

  • Mettler, L.E., and T.G. Gregg (1969). Population Genetics and Evolution. Englewood Cliffs, NJ, Prentice Hall.

    Google Scholar 

  • Murray, J. (1972). Genetic Diversity and Natural Selection. Edinburgh, Oliver and Boyd.

    Google Scholar 

  • Nei, M., T. Maruyama, and R. Chakraborty (1975). The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Google Scholar 

  • Nelson, G.J., and N.I. Platnick (1981). Systematics and Biogeography-Cladistics and Vicariance. New York, Columbia Univ. Press.

    Google Scholar 

  • Orzack, S.H. (1981). The modern synthesis is partly Wright. Paleobiol. 7: 128–134.

    Google Scholar 

  • Ozawa, T. (1975). Evolution ofLepidolina multiseptata (Permian foraminifer) in East Asia. Mem. Fac. Sci. Kyushu Univ. (D, Geol.) 23: 117–164.

    Google Scholar 

  • Paterson, H.E.H. (1985). The recognition concept of species. In: E.S. Vrba, ed., Species and Speciation, 21–29. Transvaal Mus. Monogr. 4.

  • Rensch, B. (1959). Evolution above the Species Level. London, Methuen.

    Google Scholar 

  • Reyment, R.A. (1975). Analysis of a generic level transition in Cretaceous ammonites. Evolution 28: 665–676.

    Google Scholar 

  • Rhodes, F.H.T. (1983). Gradualism, punctuated equilibrium and the Origin of Species. Nature, Lond. 305:269–272.

    Google Scholar 

  • Romer, A.S. (1959). The Vertebrate Story. Fourth ed. Chicago, Univ. Chicago Press.

    Google Scholar 

  • Romer, A.S. (1972). The Vertebrate Body. Third ed. Philadelphia, W.B. Saunders.

    Google Scholar 

  • Schindewolf, O.H. (1936). Paläontologie, Entwicklungslehre und Genetik: Kritik und Synthese. Berlin, Bornträger.

    Google Scholar 

  • Schindewolf, O.H. (1950). Grundfragen der Paläontologie. Stuttgart, Schweizerbart.

    Google Scholar 

  • Schopf, T.J.M. (1982). A critical assessment of punctuated equilibria I. Duration of taxa. Evolution 36:1144–1157.

    Google Scholar 

  • Sheldon, P.R. (1987). Parallel gradualistic evolution of Ordovician trilobites. Nature, Lond. 330: 561–563.

    Google Scholar 

  • Sheldon, P.R. (1990a). Microevolution and the fossil record. In: D.E.G. Briggs, and P.R. Crowther, eds., Palaeobiology: a Synthesis, 106–110. Oxford, Blackwell.

    Google Scholar 

  • Sheldon P.R. (1990b). Shaking up evolutionary patterns. Nature, Lond.345: 772.

    Google Scholar 

  • Simpson, G.G. (1944), Tempo and Mode in Evolution. New York, Columbia Univ. Press.

    Google Scholar 

  • Simpson, G.G. (1953). The Major Features of Evolution. New York, Columbia Univ. Press.

    Google Scholar 

  • Smith, H.M. (1955). The perspective of species. Turtox News 33: 74–77.

    Google Scholar 

  • Smith, H.M. (1965). More evolutionary terms. Syst. Zool. 14: 57–58.

    Google Scholar 

  • Stanley, S.M. (1975). A theory of evolution above the species level. Proc. natn. Acad. Sci. U.S.A. 72: 646–650.

    Google Scholar 

  • Stanley, S.M. (1978). Chronospecies' longevities, the origin of genera, and the punctuational model of evolution. Paleobiol. 4: 26–30.

    Google Scholar 

  • Stanley, S.M. (1979). Macroevolution — Pattern and Process. San Francisco, Freeman.

    Google Scholar 

  • Stanley, S.M. (1982). Macroevolution and the fossil record. Evolution 36: 460–473.

    Google Scholar 

  • Stebbins, G.L. (1950). Variation and Evolution in Plants. New York, Columbia Univ. Press.

    Google Scholar 

  • Stebbins, G.L. (1966). Chromosomal variation and evolution. Science, N.Y. 152:1463–1469.

    Google Scholar 

  • Stebbins, G.L. (1971). Chromosomal Evolution in Higher Plants. London, E. Arnold.

    Google Scholar 

  • Stebbins, G.L. (1982a). Perspectives in evolutionary theory. Evolution 36:1109–1118.

    Google Scholar 

  • Stebbins, G.L. (1982b). Darwin to DNA, Molecules to Humanity. San Francisco, W.H. Freeman.

    Google Scholar 

  • Steenis, C.G.G.J. van (1969). Plant speciation in Malesia, with special reference to the theory of nonadaptive saltatory evolution. Biol. J. Linn. Soc. Lond. 1: 97–133.

    Google Scholar 

  • Turner, J.R.G. (1983). Mimetic butterflies and punctuated equilibria: some old light on a new paradigm. Biol. J. Linn. Soc. Lond 20:277–300.

    Google Scholar 

  • Turner, J.R.G. (1986). The genetics of adaptive radiation: a neo-Darwinian theory of punctuational evolution. In: D.M. Raup, and D. Jablonski, eds., Patterns and Processes in the History of Life, 183–207, Proc. Dahlem Konferenz 1985. Berlin, Springer Verlag.

    Google Scholar 

  • Vaupel Klein, J.C. von (1984). A primer of a phylogenetic approach to the taxonomy of the genusEuchirella (Copepoda, Calanoida). Crustaceana (Supp.) 9: 1–194.

    Google Scholar 

  • Vaupel Klein, J.C. von (1987). Phylogenetic analysis and its foundations. In: P. Hovenkamp et al., eds., Systematics and Evolution: A Matter of Diversity, 159–172. Utrecht, Utrecht Univ. Press.

    Google Scholar 

  • Vrba, E.S. (1980). Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76: 61–84.

    Google Scholar 

  • Vrba, E.S. (1984). What is species selection? Syst. Zool. 33: 318–328.

    Google Scholar 

  • Vries, H. de (1905) Species and Varieties, their Origin by Mutation. Chicago, The Open Court.

    Google Scholar 

  • White, M.J.D. (1968). Models of speciation. Science, N.Y., 159: 1065–1070.

    Google Scholar 

  • White, M.J.D. (1978). Modes of Speciation. San Francisco, Freeman.

    Google Scholar 

  • White, M.J.D., R.E. Blackith, R.M. Blackith, and J. Cheney (1967). Cytogenetics of theviatica group of morabine grasshoppers. I. The ‘coastal’ species. Aust. J. Zool. 15: 263–302.

    Google Scholar 

  • Wiley, E.O. (1981). Phylogenetics — Theory and Practice of Phylogenetic Systematics. New York, John Wiley.

    Google Scholar 

  • Williamson, P. G. (1981). Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature, Lond. 293: 437–443.

    Google Scholar 

  • Willis, J.C. (1940). The Course of Evolution by Differentiation or Divergent Mutation rather than by Selection. Cambridge, Cambridge Univ. Press.

    Google Scholar 

  • Willmann, R. (1983). Biospecies und phylogenetische Systematik. Z. zool. Syst. Evolutionsf. 21: 241–249.

    Google Scholar 

  • Willman, R. (1985). Die Art in Raum und Zeit. Das Artkonzept in der Biologie und Paläontologie. Berlin, P. Parey.

    Google Scholar 

  • Wright, S. (1921a). Systems of mating. I. The biometric relations between parent and offspring. Genetics 6: 111–123.

    Google Scholar 

  • Wright, S. (1921b). Systems of mating. II. The effects of inbreeding on the genetic composition of a population. Genetics 6: 124–143.

    Google Scholar 

  • Wright, S. (1921c). Systems of mating. III. Assortative mating based on somatic resemblance. Genetics 6: 144–161.

    Google Scholar 

  • Wright, S. (1921d). Systems of mating. IV. The effects of selection. Genetics 6:162–166.

    Google Scholar 

  • Wright, S. (1921e). Systems of mating. V. General considerations. Genetics 6:167–178.

    Google Scholar 

  • Wright, S. (1929). Evolution in a Mendelian population. Anatom. Rec. 44: 287.

    Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. sixth int. Congr. Genetics 1: 356–366.

    Google Scholar 

  • Wright, S. (1967). Comments on the preliminary working papers of Eden and Waddington. In: P.S. Moorehead, and M.M. Kaplan, eds., Mathematical Challenges to the Neo-Darwinian Theory of Evolution, 117–120. (Wistar Inst. Symp. 5). Philadelphia, Wistar Inst. Press.

    Google Scholar 

  • Wright, S. (1982). Character change, speciation, and the higher taxa. Evolution 36: 427–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Vaupel Klein, J.C. Punctuated equilibria and phyletic gradualism: Even partners can be good friends. Acta Biotheor 42, 15–48 (1994). https://doi.org/10.1007/BF00706838

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00706838

Keywords

Navigation