Skip to main content
Log in

Coordinate change in phenotype in a mouse cell line selected forCD8 expression

  • Original Articles
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

A CD4+, CD8+ derivative of the CD4+, CD8 cell line SAKRTLS 12.1 was isolated by fluorescence activated cell sorting for CD8+ cells. This derivative showed a co-ordinate change in a number of independent characters: The parental cell line was CD4+, CD8, CD3+, CD5hi, HSA+, DEXR, CD44hi, while the derivative was CD4+, CD8+, CD3, CD510, HSA+, DEXS, CD4410. The derivative expressed the Thy-1.1, Ly-2.1, and Ly-3.1 surface antigens, consistent with origin from the SAKRTLS 12.1 parental cell line, and showed a drug resistance profile identical to that of the parent. It was not possible to isolate revertants with a phenotype identical to that of the parental cell line. Activation of the structural gene coding for CD8 α chain was correlated with demethylation at several sites. We interpret these results to mean that this CD8+ derivative of SAKRTLS 12.1 arose as a result of an alteration of a gene that coordinately regulates multiple genes whose expression changes during thymocyte differentiation. Gene methylation may contribute, directly or indirectly, to some or all of the changes in gene expression observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anson, D. S., Clarkin, K., and Hyman, R.: Activation ofLyt-2 associated with distant upstream insertion of an SL3-3 provirus.Immunogenetics 36: 3–14, 1992

    Google Scholar 

  • Antequera, F., Boyes, J., and Bird, A.: High levels ofde novo methylation and altered chromatin structure at CpG islands in cell lines.Cell 62: 503–514, 1990

    Google Scholar 

  • Bluestone, J., Pardoll, D., Sharrow, S., and Fowlkes, B.: Characterization of murine thymocytes with CD3-associated T-cell receptor structures.Nature 326: 82–84, 1987

    Google Scholar 

  • Borgulya, P., Kishi, H., Muller, U., Kirberg, J., and von Boehmer, H.: Development of the CD4 and CD8 lineage of T cells: instruction versus selection.EMBO J 10: 913–918, 1991

    Google Scholar 

  • Budd, R., Cerottini, J.-C., Horvath, C., Bron, C., Pedrazzini, T., Howe, R., and MacDonald, H.: Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation.J Immunol 138: 3120–3129, 1987

    Google Scholar 

  • Buschhausen, G., Wittig, B., Graessmann, M., and Graessmann, A.: Chromatin structure is required to block transcription of the methylated herpes simplex thymidine kinase gene.Proc Natl Acad Sci USA 84: 1177–1181, 1987

    Google Scholar 

  • Carbone, A., Marrack, P., and Kappler, J.: Remethylation at sites 5′ of the murine Lyt-2 gene in association with shutdown of Lyt-2 expression.J Immunol 141: 1369–1375, 1988a

    Google Scholar 

  • Carbone, A., Marrack, P., and Kappler, J.: DemethylatedCD8 gene in CD4+ T cells suggests that CD4+ cells develop from CD8+ precursors.Science 242: 1174–1176, 1988b

    Google Scholar 

  • Ceder, H.: DNA methylation and gene activity.Cell 53: 3–4, 1988

    Google Scholar 

  • Ceredig, R., Dialynas, D., Fitch, F., and MacDonald, H.: Precursors of T cell growth factor producing cells in the thymus: Ontogeny, frequency, and quantitative recovery in a subpopulation of phenotypically mature thymocytes defined by monoclonal antibody GK 1.5.J Exp Med 158: 1654–1671, 1983

    Google Scholar 

  • Crispe, I., and Bevan, M.: Expression and functional significance of the J11d marker on mouse thymocytes.J Immunol 138: 2013–2018, 1987

    Google Scholar 

  • Davis, R., Weintraub, H., and Lassar, H.: Expression of a single transfected cDNA converts fibroblasts to myoblasts.Cell 51: 987–1000, 1987

    Google Scholar 

  • Engler, P., Haasch, D., Pinkert, C., Doglio, L., Glymour, M., Brinster, R., and Storb, U.: A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci.Cell 65: 937–947, 1991

    Google Scholar 

  • Evans, G., Hyman, R., and Lewis, K.: A mutant lymphoma cell line with a defectiveThy-1 glycoprotein gene.Immunogenetics 25: 28–34, 1987

    Google Scholar 

  • Gasson, J. and Bourgeois, S.: A new determinant of glucocorticoid sensitivity in lymphoid cell lines.J Cell Biol 96: 409–415, 1983

    Google Scholar 

  • Gasson, J., Ryden, T., and Bourgeois, S.: Role ofde novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line.Nature 302: 621–623, 1983

    Google Scholar 

  • Guidos, C., Weissman, I., and Adkins, B.: Intrathymic maturation of murine T lymphocytes from CD8+ precursors.Proc Natl Acad Sci USA 86: 7542–7546, 1989

    Google Scholar 

  • Hedrick, S., Cohen, D., Nielson, E., and Davis, M.: Isolation of cDNA clones encoding T cell-specific membrane associated proteins.Nature 308: 149–153, 1984

    Google Scholar 

  • Hyman, R.:Thy-1 is not transcribed in the Thy-1 g mutant and in Thy-1 interlineage hybrids.Immunogenetics 34: 261–265, 1991

    Google Scholar 

  • Hyman, R., and Cunningham, K.: A Thy-1 mutant defining a gene acting in trans position to regulate cell-surface Thy-1 glycoprotein expression and Thy-1 messenger RNA content.Immunogenetics 23: 312–321, 1986

    Google Scholar 

  • Hyman, R., Cunningham, K., and Stallings, V.: Evidence for a genetic basis for the Class A Thy-1 defect.Immunogenetics 10: 261–271, 1980

    Google Scholar 

  • Hyman, R., Trowbridge, I., Stallings, V., and Trotter, J.: Revertant expressing a structural variant of T200 glycoprotein.Immunogenetics 15: 413–420, 1982

    Google Scholar 

  • Isobe, I., Fortunato, A., Giguere, V., Grosveld, F., and Mitchison, N.: Anti-Thy-1 antibody responses evoked by Thy-1 antigen expressed in transfected mouse mastocytoma cells and rat fibroblast.Immunol 56: 505–512, 1985

    Google Scholar 

  • Kollias, G., Spanopoulos, E., Grosveld, F., Ritter, M., Beech, J., and Morris, R.: Differential regulation of aThy-1 gene in transgenic mice.Proc Natl Acad Sci USA 84: 1492–1496, 1987

    Google Scholar 

  • Ledbetter, J. and Herzenberg, L.: Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens.Immunol Rev 47: 63–90, 1979

    Google Scholar 

  • Ledbetter, J., Rouse, R., Micklem, H., and Herzenberg, L.: T cell subsets defined by expression of Lyt-1, 2, 3, and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views.J Exp Med 152: 280–295, 1980

    Google Scholar 

  • Lesley, J., Hyman, R., Schulte, R., and Trotter, J.: Expression of transferrin receptor on murine hematopoietic progenitors.Cell Immunol 83: 14–25, 1984

    Google Scholar 

  • Lesley, J., Schulte, R., Trotter, J., and Hyman, R.: Qualitative and quantitative heterogeneity in Pgp-1 expression among murine thymocytes.Cell Immunol 112: 40–54, 1988

    Google Scholar 

  • Little, P.: Choice and use of cosmid vectors.In: D. M. Glover (ed.):DNA Cloning, Vol. 3, pp. 19–42, IRL Press, Oxford, 1987

    Google Scholar 

  • Lynch, F. and Ceredig, R.: Mouse strain variation in Ly-24 (Pgp-1) expression by peripheral T cells and thymocytes: implications for T cell differentiation.Eur J Immunol 19: 223–229, 1989

    Google Scholar 

  • MacDonald, H., Hengartner, H., and Pedrazzini, T.: Intrathymic deletion of self-reactive cells prevented by neonatal anti-CD4 antibody treatment.Nature 335: 175–177, 1988

    Google Scholar 

  • MacLeod, C., Hays, E., Hyman, R., and Bourgeois, S.: A new murine model system for thein vitro development of thymoma cell heterogeneity.Cancer Res 44: 1784–1790, 1984

    Google Scholar 

  • Mather, E., Nelson, K., Haimovich, J., and Perry, R.: Mode of regulation of immunoglobulin μ- and δ-chain expression varies during B-lymphocyte maturation.Cell 36: 329–338, 1984

    Google Scholar 

  • Mathieson, B. and Fowlkes, B.: Cell surface antigen expression on thymocytes: Development and phenotypic differentiation of intrathymic subsets.Immunol Rev 82: 141–173, 1984

    Google Scholar 

  • Nakauchi, H., Nolan, G., Hsu, C., Huang, H., Kavathas, P., and Herzenberg, L.: Molecular cloning of Lyt-2, a membrane glycoprotein marking a subset of mouse T lymphomas: Molecular homology to its counterpart Leu-2/T8, and to immunoglobulin variable regions.Proc Natl Acad Sci USA 82: 5126–5130, 1985

    Google Scholar 

  • Nakauchi, H., Shinkai, Y.-I., and Okumura, K.: Molecular cloning of Lyt-3, a membrane glycoprotein marking a subset of mouse T-lymphocytes: Molecular homology to immunoglobulin and T-cell receptor variable and joining regions.Proc Natl Acad Sci USA 84: 4210–4214, 1987

    Google Scholar 

  • Ramsdell, F., Jenkins, M., Dinh, Q., and Fowlkes, B.: The majority of CD4+, 8 thymocytes are functionally immature.J Immunol 147: 1779–1785, 1991

    Google Scholar 

  • Sambrook, J., Fritsch, R., and Maniatis, T.:Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989

    Google Scholar 

  • Scollay, R.: T-cell subset relationships in thymocyte development.Curr Opin Immunol 3: 204–209, 1991

    Google Scholar 

  • Scollay, R., Bartlett, P., and Shortman, K.: T-cell development in the adult murine thymus: Changes in the expression of the surface antigens Ly2, L3T4, and B2A2 during development from early precursor cells to emigrants.Immunol Rev 82: 79–103, 1984

    Google Scholar 

  • Scollay, R. and Shortman, K.: Thymocyte subpopulations: an experimental review, including flow cytometric cross-correlations between the major murine thymocyte markers.Thymus 5: 245–295, 1983

    Google Scholar 

  • Scollay, R. and Weissman, I.: T cell maturation: thymocyte and thymus migrant subpopulations defined with monoclonal antibodies to the antigens Lyt-1, Lyt-2, and Th B.J Immunol 124: 2841–2844, 1980

    Google Scholar 

  • Scollay, R., Wilson, A., and Shortman, K.: Thymus cell migration: Analysis of thymus emigrants with markers that distinguish medullary thymocytes from peripheral T cells.J Immunol 132: 1089–1094, 1984

    Google Scholar 

  • Shortman, K., Mandel, T., Andrews, P., and Scollay, R.: Are any functionally mature cells of medullary phenotype located in the thymus cortex?Cell Immunol 93: 350–363, 1985

    Google Scholar 

  • Shortman, K., Wilson, A., Egerton, M., Pearse, M., and Scollay, R.: Immature CD4 CD8+ murine thymocytes.Cell Immunol 113: 462–479, 1988

    Google Scholar 

  • Siminovitch, L.: On the nature of hereditable variation in cultured somatic cells.Cell 7: 1–11, 1976

    Google Scholar 

  • Smith, L.: CD4+ murine T cells develop from CD8+ precursorsin vivo.Nature 326: 798–800, 1987

    Google Scholar 

  • Southern, P. and Berg, P.: Transformation of mammalian cells to antibiotic resistance with a bacterial gene under the control of the SV40 early region promoter.J Mol Appl Genetics 1: 327–341, 1982

    Google Scholar 

  • Teh, H., Kisielow, P., Scott, B., Kiski, H., Uamotsu, Y., Bluthmann, H., and von Boehmer, H.: Thymic major histocompatibility antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells.Nature 335: 229–233, 1988

    Google Scholar 

  • Thayer, M. and Weintraub, H.: Activation and repression of myogenesis in somatic cell hybrids: Evidence fortrans-negative regulation of Myo D in primary fibroblasts.Cell 63: 23–32, 1990

    Google Scholar 

  • Thomas, M., Reynolds, P., Chain, A., Ben-Neriah, Y., and Trowbridge, I.: B-cell variant of mouse T200 (Ly-5): evidence for alternative mRNA splicing.Proc Natl Acad Sci USA 84: 5360–5363, 1987

    Google Scholar 

  • Thompson, J., Simkevich, C., Holness, M., Kang, A., and Raghow, R.:In vitro methylation of the promoter and enhancer of Pro α (I) collagen gene leads to its transcriptional inactivation.J Biol Chem 266: 2549–2556, 1991

    Google Scholar 

  • Van Ewijk, W., van Soert, G., and van den Engh, G.: Fluorescence analysis and anatomic distribution of mouse T-lymphocyte subsets defined by monoclonal antibodies to the antigens Thy-1, Lyt-1, Lyt-2, and T-200.J Immunol 127: 2594–2604, 1981

    Google Scholar 

  • Weaver, C., Pingel, J., Nelson, J., and Thomas, M.: CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli.Mol Cell Biol 11: 4415–4422, 1991

    Google Scholar 

  • Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T., Turner, D., Rupp, R., Hollenberg, S., Zhuang, Y., and Lassar, A.: Themyo D gene family: Nodal point during specification of the muscle cell lineage.Science 251: 761–766, 1991

    Google Scholar 

  • Wilson, A., Day, L., Scollay, R., and Shortman, K.: Subpopulations of mature murine thymocytes: Properties of CD4 CD8+ and CD4+ CD8 thymocytes lacking the heat-stable antigen.Cell Immunol 117: 312–326, 1988

    Google Scholar 

  • Youn, H., Harris, J., and Gottlieb, P.: Nucleotide sequence analysis of the C.AKRLyt-2 a gene: structural polymorphism in alleles encoding the Lyt-2.1 T-cell surface alloantigen.Immunogenetics 28: 345–352, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address correspondence and offprint requests to: R. Hyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyman, R., Stallings, V. Coordinate change in phenotype in a mouse cell line selected forCD8 expression. Immunogenetics 36, 149–156 (1992). https://doi.org/10.1007/BF00661091

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00661091

Keywords

Navigation