Skip to main content
Log in

Temperature dependence of the non-Newtonian viscosity of elongated micellar solutions

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report in this work new results of the study on the non-Newtonian viscosity of aqueous micellar solutions of cetyltrimethylammonium bromide (CTAB) in the presence of potassium bromide (KBr), in the concentration range where the elongated micelles overlap. The experiments have been performed as a function of the surfactant concentration, temperature and shear rate by use of a Couette-viscosimeter.

In the non-Newtonian range, at relatively low surfactant concentration (≲0.25 M/l), our results show that the flow curves obtained at different temperatures converge to a single liner curve with a characteristic slope varying with the surfactant concentration. These same data can be superposed on a master curve when appropriate reduced variables are used. The shape of the flow curves obtained at different temperatures for a sufficiently high surfactant concentration is similar to that obtained for monodisperse polymer solutions at different molecular weights. The slope obtained of about −1 is also predicted by Graessley's model in the theory of microviscoelasticity based on the concept of entanglement for polymer solutions. However, at surfactant concentration higher than 0.25 M/l our results show an unusual behavior. Above some critical shear rate it is possible to obtain an increase of the apparent viscosity with temperature. One possible explanation of this effect can be found in the increase of the entanglement with concentration coupled with the temperature and direct now effects on scission and recombination rate of the micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Candau SJ, Hirsch E, Zana R, Adam M (1988) J Coll Interf Sci 122:430

    Google Scholar 

  2. Candau SJ, Hirsch E, Zana R, Delsanti M (1989) Langmuir 5:1225

    Google Scholar 

  3. Candau SJ, Merikhi F, Waton G, Lemarechal P (1990) J Phys France 51:977

    Google Scholar 

  4. Makhloufi R, Hirsch E, Candau SJ, Binana-Limbele W, Zana R (1990) J Phys Chem 94:387

    Google Scholar 

  5. Imae T, Ikeda S (1987) Coll Polym Sci 265:1090

    Google Scholar 

  6. Imae T, Abe A, Ikeda S (1988) J Phys Chem 92:1548

    Google Scholar 

  7. Shikata T, Hirata H (1987) Langmuir 3:1081; (1988) Langmuir 4:354

    Google Scholar 

  8. Sakaiguchi Y, Shikata T, Urakami H, Tamura A, Hirata H (1987) Coll Polym Sci 265:750; (1987) J Electron Micros 36:168

    Google Scholar 

  9. Porte G, Appell J (1981) J Phys Chem 85:2511

    Google Scholar 

  10. Porte G, Appell J, Poggi Y (1980) J Phys Chem 84:3105

    Google Scholar 

  11. Rehage H, Hoffmann H (1988) J Phys Chem 92:4712

    Google Scholar 

  12. Hoffmann H, Löbl H, Rehage H, Wunderlich I (1985) Tenside detergents 22:290

    Google Scholar 

  13. Cates ME (1987) Macromol 20:2289; (1987) Europhys Lett 4:497; (1988) J Phys France 49:1593

    Google Scholar 

  14. Cates ME, Candau SJ (1990) J Phys Cond Matter 2:6869

    Google Scholar 

  15. Shikata T, Hirata H (1988) J Non-Newtonian Fluid Mech 28:271

    Google Scholar 

  16. Ostwald W (1924) Z Phys Chem 62:111

    Google Scholar 

  17. De Waele A (1923) J Oil Colour Chem Ass 6:33

    Google Scholar 

  18. Bueche F (1962) Physical Properties of Polymers. Interscience, New-York

    Google Scholar 

  19. Takemura T (1958) J Polymer Sci 27:549

    Google Scholar 

  20. Graessley WW (1967) J Chem Phys 47:1942

    Google Scholar 

  21. Graessley WW, Segal L (1969) Macromol 2:49

    Google Scholar 

  22. Abdel-Alim AH, Balke ST, Hamielec AE (1973) J Appl Polym Sci 17:1431

    Google Scholar 

  23. Attané P, Leroy P, Picard JM, Turrel G (1981) J Non-Newtonian Fluid Mech 9:13

    Google Scholar 

  24. Ballauf M (1981) Thesis, Mainz

  25. Kulicke WM, Porter RS (1981) J Polym Sci Polym Phys Ed 19:1173

    Google Scholar 

  26. Kulicke WM, Kniewske R (1984) Rheol Acta 23:75

    Google Scholar 

  27. Stratton RA (1966) J Coll and Interf Sci 22:517

    Google Scholar 

  28. Onogi S, Kato H, Ueki S, Ibaragi T (1966) J Polym Sci C 15:481

    Google Scholar 

  29. Onogi S, Masuda T, Ibaragi T (1968) Kolloid Z Z Polym 222:110

    Google Scholar 

  30. Kataoka T, Ueda S (1965) J Polym Sci A3:2947

    Google Scholar 

  31. Vinogradov GV, Malkin AYA (1964) J Polym Sci A2:2357

    Google Scholar 

  32. Decruppe JP, Cressely R, Makhloufi R (to be published)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhloufi, R., Cressely, R. Temperature dependence of the non-Newtonian viscosity of elongated micellar solutions. Colloid Polym Sci 270, 1035–1041 (1992). https://doi.org/10.1007/BF00655973

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655973

Key words

Navigation