Skip to main content
Log in

Hydroquinone clathrates and the theory of clathrate formation

  • Clathrates of Quinol and of Dianin's Compound
  • Published:
Journal of inclusion phenomena Aims and scope Submit manuscript

Abstract

The model of a clathrate solid solution, taking into account directed and nondirected guest-guest interactions, has been obtained using statistical thermodynamic methods in the approximation of the mean-field type for the general case (the formation of cavities of several types and the inclusion of different kinds of guest molecules by the host). Consideration of this interaction has been shown to improve the quantitative agreement between theory and experiment. When the guest-guest interaction is considerable in the case of guest molecules of the same type a phase transition (of a gas-liquid type) of the guest component may occur in the clathrate matrix. In the case of guests of two different types, the phase transition of the guest subsystem of the liquid-liquid type may also occur within one framework at the expense of a preferable interaction among guest molecules of the same type.

We present the isothermal (20°C) section of the phase diagram of a hydroquinone-— formic acid — acetonitrile system. Clathrates, forming in the binary systems (with hydroquinone) produce restricted solid solutions (of type IV, according to Roozeboom). These and other experimental data are discussed in terms of the proposed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Palin and H. M. Powell:J. Chem. Soc. 208–221 (1947).

  2. H. M. Powell:J. Chem. Soc. 61–65 (1948).

  3. H. M. Powell: Clathrate Compounds, inNon-Stoichiometric Compounds (Ed.: L. Mandelcorn) (Russian Translation), pp. 398–449, Khimiya, Moscow (1971).

    Google Scholar 

  4. J. H. van der Waals:Trans. Faraday Soc. 52, 184–193 (1956).

    Google Scholar 

  5. J. H. van der Waals and J. C. Platteeuw:Adv. Chem. Phys. 2, 1–57 (1959).

    Google Scholar 

  6. V. R. Belosludov, Yu. A. Dyadin, O. A. Drachiova, and G. N. Chekhova.Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk 9, 60–67 (1979);C.A. 91, 163770u (1979).

    Google Scholar 

  7. V. R. Belosludov, Yu. A. Dyadin, and S. I. Fadeev:Izv. Sib. Otd. Akad. Nauk. SSSR, Ser. Khim. Nauk 7, 57–63 (1981);C.A. 95, 103481y (1981).

    Google Scholar 

  8. G. N. Chekhova and Yu. A. Dyadin:Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Kim. Nauk 12, 75–82 (1978);C.A. 89, 221769x (1979).

    Google Scholar 

  9. G. N. Chekhova and Yu. A. Dyadin:Pol. J. Chem. 56, 407–410 (1982).

    Google Scholar 

  10. P. Sixon and P. Dansas.Ber. Bunsenges. Phys. Chem. 80, 364–389 (1976).

    Google Scholar 

  11. S. R. Gough, S. K. Garg, and D. W. Davidson:J. Chem. Phys. 3, 239 (1974).

    Google Scholar 

  12. T. Matsuo, H. Suga, and S. Seki:J. Phys. Soc. Jpn. 30, 785–793 (1970).

    Google Scholar 

  13. M. Sitarski:Rocz. Chem. 49, 159–164 (1975).

    Google Scholar 

  14. V. R. Belosludov, Yu. A. Dyadin, G. N. Chekhova, and S. I. Fadeev:J. Incl. Phenom. 1, 251–262 (1984).

    Google Scholar 

  15. D. E. Evans and R. E. Richards.Proc. R. Soc. London 223A, 238–250 (1954).

    Google Scholar 

  16. F. A. Schreinemakers:Z. Phys. Chem. 11, 75–100 (1893);55, 71–98 (1906).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshits:Statisticheskaya Fizika, 113, Nauka, Moscow (1964).

    Google Scholar 

  18. V. E. Schneider, E. E. Tornau, and A. A. Vlasova:Chem. Phys. Lett. 93, 188–192 (1982).

    Google Scholar 

  19. A. A. Vlasova and V. E. Schneider:Litovskii Phys. J. 23, 14, 61–72 (1983).

    Google Scholar 

  20. R. Braut:Phase Transitions (Russian translation), p. 26, Mir, Moscow (1967).

    Google Scholar 

  21. A. W. Adamson:Physical Chemistry of Surfaces, 3th edn. (Russian translation), pp. 446–447, Mir, Moscow (1979).

    Google Scholar 

  22. C. Kittel:Introduction to Solid State Physics, 4th edn. (Russian translation), p. 117, Nauka, Moscow (1978).

    Google Scholar 

  23. Yu. N. Kazankin, A. A. Palladiev, and A. M. Trofimov:Zh., Obshch. Khim 42, 2607–2611, 2611–2615 (1972);C.A. 78, 76317g, 76316g (1973).

    Google Scholar 

  24. D. E. Palin and H. M. Powell:J. Chem. Soc. 815–821 (1948).

  25. S. V. Lindeman, V. E. Shklover, and Yu. T. Struchkov:Cryst. Struct. Commun. 1173–1179 (1981).

  26. T. L. Chan and T. C. W. Mak:J. Chem. Soc., Perkin Trans. 2, 773 (1983).

    Google Scholar 

  27. Yu. A. Dyadin, and L. S. Aladko:Zh. Strukt. Khim. 18, 51–57 (1977);C.A. 87, 12297m (1977).

    Google Scholar 

  28. S. C. Wallwork and H. M. Powell:J. Chem. Soc., Perkin Trans. 2, 641–646 (1980).

    Google Scholar 

  29. T. M. Polyanskaya, V. I. Andrianov, V. I. Alekseev, V. V. Bakakin, Yu. A. Dyadin, and G. N. Chekhova:Dokl. Akad. Nauk SSSR 226, 349–353 (1982).

    Google Scholar 

  30. H. C. McAdie and C. B. Frost:Can. J. Chem. 36, 635–651 (1958).

    Google Scholar 

  31. Yu. A. Dyadin, G. N. Chekhova, and I. I. Yakovlev:Izv. Sib. Otd. Nauk SSSR, Ser. Khim. Nauk 15, 49–55 (1973),C.A. 80, 64395s (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor H. M. Powell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belosludov, V.R., Dyadin, Y.A., Chekhova, G.N. et al. Hydroquinone clathrates and the theory of clathrate formation. Journal of Inclusion Phenomena 3, 243–260 (1985). https://doi.org/10.1007/BF00655728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655728

Key words

Navigation