Skip to main content
Log in

Calorimetric study of high-pressure polymorphs of MnSiO3

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

With increasing pressure, MnSiO3 rhodonite stable at atmospheric pressure transforms to pyroxmangite, then to clinopyroxene and further to tetragonal garnet, which finally decomposes into MnO (rocksalt) plus SiO2 (stishovite). High temperature solution calorimetry of synthetic rhodonite, clinopyroxene and garnet forms of MnSiO3 was used to measure the enthalpies of these transitions. ΔH 0974 for the rhodonite-clinopyroxene and ΔH 0298 for the clinopyroxene-garnet transition are 520±490 and 8,270±590 cal/mol, respectively. The published data on the enthalpy of the rhodonite-pyroxmangite transition, phase equilibrium boundaries, compressibility and thermal expansion data are used to calculate entropy changes for the transitions. The enthalpy, entropy and volume changes are very small for all the transitions among rhodonite, pyroxmangite and clinopyroxene. The calculated boundary for the clinopyroxene-garnet transition is consistent with the published experimental results. The pyroxene-garnet transition in several materials, including MnSiO3, is characterized by a relatively small negative entropy change and large volume decrease, resulting in a small positiveP – T slope. The disproportionation of MnSiO3 garnet to MnO plus stishovite and of Mn2SiO4 olivine to garnet plus MnO are calculated to occur at about 17–18 and 14–15 GPa, respectively, at 1,000–1,500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Google Scholar 

  • Akaogi M, Akimoto S (1979) High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19:31–51

    Google Scholar 

  • Akaogi M, Navrotsky A (1984) The quartz-coesite-stishovite transformations: new calorimetric measurements and calculation of phase diagrams. Phys Earth Planet Inter 36:124–134

    Google Scholar 

  • Akaogi M, Ross NL, McMillan P, Navrotsky A (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel) — Thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am Mineral 69:499–512

    Google Scholar 

  • Akimoto S, Syono Y (1972) High-pressure transformations in MnSiO3. Am Mineral 57:76–84

    Google Scholar 

  • Anderson DL (1982) Chemical composition and evolution of the mantle. In: Akimoto S, Manghnani MH (eds). High Pressure Research in Geophysics. Center Acad Pub Japan, Tokyo, pp 301–318

    Google Scholar 

  • Fujino K, Momoi H, Sawamoto H (1981) Crystal structure of high pressure polymorph of MnSiO3 (garnet-type). Abst Ann Meet Mineral Soc Japan, pp 60

  • Fujino K, Momoi H, Sawamoto H, Kumazawa M (1985) Crystal structure and chemistry of MnSiO3 tetragonal garnet. Am Mineral submitted

  • Ito H, Kawada K, Akimoto S (1974) Thermal expansion of stishovite. Phys Earth Planet Inter 8:277–281, Erratum, Phys Earth Planet Inter 9:371

    Google Scholar 

  • Ito E, Matsui Y (1977) Silicate ilmenites and the post-spinel transformations. In: Manghnani MH, Akimoto S (eds) High-Pressure Research: Applications in Geophysics. Acad Press, New York, NY, pp 193–208

    Google Scholar 

  • Ito E, Matsumoto T, Kawai N (1974) High pressure decompositions in manganese silicates and their geophysical implications. Phys Earth Planet Inter 8:241–245

    Google Scholar 

  • Leitner BJ, Weidner DJ, Liebermann RC (1980) Elasticity of single crystal pyrope and implications for garnet solid solution series. Phys Earth Planet Inter 22:111–121

    Google Scholar 

  • Levien L, Prewitt CT, Weidner DJ (1979) Compression of pyrope. Am Mineral 64:805–808

    Google Scholar 

  • Liebau F (1962) Die Systematik der Silikate. Naturwissenschaften 49:481–491

    Google Scholar 

  • Liu LG (1977a) The system enstatite-pyrope at high pressures and temperatures and the earth's mantle. Earth Planet Sci Lett 36:237–245

    Google Scholar 

  • Liu LG (1977b) The post-spinel phases of twelve silicates and germanates. In: Manghnani MH, Akimoto S (eds) High-Pressure Research: Applications in Geophysics. Acad Press, New York, NY, pp 245–253

    Google Scholar 

  • Lyzenga GA, Ahrens TJ, Mitchell AC (1983) Shock temperatures of SiO2 and their geophysical implications. J Geophys Res 88:2431–2444

    Google Scholar 

  • Narita H, Koto K, Morimoto N (1977) The crystal structures of MnSiO3 polymorphs (rhodonite- and pyroxmangite-type). Mineral J 8:329–342

    Google Scholar 

  • Navrotsky A (1977) Progress and new directions in high temperature calorimetry. Phys Chem Minerals 2:89–104

    Google Scholar 

  • Navrotsky A (1980) Lower mantle phase transitions may generally have negative pressure temperature slopes. Geophys Res Lett 7:709–711

    Google Scholar 

  • Navrotsky A, Akaogi M (1984) The α, β, γ phase relations in Fe2SiO4-Mg2SiO4 and Co2SiO4-Mg2SiO4: calculation from thermochemical data and geophysical applications. J Geophys Res 89:10135–10140

    Google Scholar 

  • Navrotsky A, Coons WE (1976) Thermochemistry of some pyroxenes and related compounds. Geochim Cosmochim Acta 40:1281–1288

    Google Scholar 

  • Navrotsky A, Hon R, Weill DF, Henry DJ (1980) Thermochemistry of glasses and liquids in the systems CaMgSi2O6-CaAl2Si2O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O. Geochim Cosmochim Acta 44:1409–1423

    Google Scholar 

  • Navrotsky A, Pintchovski FS, Akimoto S (1979) Calorimetric study of the stability of high pressure phases in the systems CoO-SiO2 and “FeO”-SiO2 and calculation of phase diagrams in MO-SiO2 systems. Phys Earth Planet Inter 19:275–292

    Google Scholar 

  • Nishizawa O, Matsui Y (1972) An experimental study on partition of magnesium and manganese between olivine and orthopyroxene. Phys Earth Planet Inter 6:377–384

    Google Scholar 

  • Okajima S, Suzuki I, Seya K, Sumino Y (1978) Thermal expansion of single crystal tephroite. Phys Chem Minerals 3:111–115

    Google Scholar 

  • O'Neill HStC, Navrotsky A (1980) The thermodynamics of the clinopyroxene to pyroxenoid phase transition in the systems CaO-“FeO”-SiO2 and CaO-MnO-SiO2. Eos Trans Am Geophys Union 61:1147

    Google Scholar 

  • Papike JJ, Cameron M (1976) Crystal chemistry of silicate minerals of geophysical interest. Rev Geophys Space Phys 14:37–80

    Google Scholar 

  • Prewitt CT, Peacor DR (1964) Crystal chemistry of the pyroxenes and pyroxenoids. Am Mineral 49:1527–1542

    Google Scholar 

  • Ringwood AE (1975) Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York, NY

    Google Scholar 

  • Ringwood AE, Seabrook M (1963) High pressure phase transformations in germanate pyroxenes and related compounds. J Geophys Res 68:4601–4609

    Google Scholar 

  • Ringwood AE, Major A (1967) Some high-pressure transformations of geophysical significance. Earth Planet Sci Lett 2:106–110

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U S Geol Surv Bull, 1452

  • Ross NL, Akaogi M, Navrotsky A, Susaki J, McMillan P (1985) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet and perovskite): studies by high pressure synthesis, high temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res, in press

  • Skinner BJ (1966) Thermal expansion. In: Clark SP (ed) Handbook of Physical Constants. Geol Soc Am Memoir 97:75–96

    Google Scholar 

  • Sumino Y (1979) The elastic constants of Mn2SiO4, Fe2SiO4 and Co2SiO4 and the elastic properties of olivine group minerals at high temperatures. J Phys Earth 27:209–238

    Google Scholar 

  • Sumino Y, Kumazawa M, Nishizawa O, Pluschkell W (1980) The elastic constants of single crystal Fe1−xO, MnO and CoO, and the elasticity of stoichiometric magnesiowustite. J Phys Earth 28:475–495

    Google Scholar 

  • Suzuki I, Okajima S, Seya K (1979) Thermal expansion of single crystal manganosite. J Phys Earth 27:63–69

    Google Scholar 

  • Takei H, Hosoya S, Ozima M (1984) Synthesis of large single crystals of silicates and titanates. In: Sunagawa I (ed) Materials Science of the Earth's Interior. Terra Sci Pub Tokyo, pp 107–130

    Google Scholar 

  • Tokonami M, Horiuchi H, Nakano A, Akimoto S, Morimoto N (1979) The crystal structure of the pyroxene-type MnSiO3. Mineral J 9:424–426

    Google Scholar 

  • Watanabe H (1982) Thermochemical properties of synthetic high-pressure compounds relevant to the earth's mantle. In: Akimoto S, Manghnani MH (eds) High-Pressure Research in Geophysics. Center Acad Pub Japan, Tokyo, pp 441–464

    Google Scholar 

  • Weaver JS, Takahashi T, Bassett WA (1973) Thermal expansion of stishovite. Eos Trans Am Geophys Union 54:475

    Google Scholar 

  • Weidner DJ, Bass JD, Ringwood AE, Sinclair W (1982) The single-crystal elastic moduli of stishovite. J Geophys Res 87:4740–4746

    Google Scholar 

  • Weidner DJ, Wang H, Ito J (1978) Elasticity of orthoenstatite. Phys Earth Planet Inter 17:P7-P13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address as of Aug. 1985: Dept. of Geological and Geophysical Sciences, Princeton University, Princeton, N.J. 08544, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akaogi, M., Navrotsky, A. Calorimetric study of high-pressure polymorphs of MnSiO3 . Phys Chem Minerals 12, 317–323 (1985). https://doi.org/10.1007/BF00654341

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654341

Keywords

Navigation