Skip to main content
Log in

Membrane electrical properties of vascular smooth muscle from the guinea pig superior mesenteric artery

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Some electrical membrane properties of an isolated small artery, namely, the superior mesenteric artery of the guinea pig, were studied by intracellular microelectrodes. The mean resting membrane potential (E m) was −54 mV. The average slope of theE m vs. log [K]o curve (between 10 and 100 mM [K]o) was 32 mV/decade, and the curve extrapolated to a [K]i of 160 mM. The ratio of Na+ permeability to K+ permeability (P Na/P K) at 4.0 mM [K]o calculated from the Goldman constant-field equation (assuming Cl to be passively distributed) was 0.18 (E m=−46 mV after a 5 min exposure to ouabain to suppress any electrogenic pump potential). The normal input resistance (R in) averaged 8.5 mΩ. Choline substitution for Na+ or amiloride, an agent known to depressP Na, hyperpolarized the muscle to about −63 mV without a significant change inR in. Ba2+ (0.5 mM) depolarized the muscle to −37 mV, increasedR in to 15 mΩ, and produced spontaneous action potentials in this normally quiescent artery; tetraethylammonium (TEA, 5 mM) enabled large overshooting action potentials to be produced upon stimulation. Glutamate of NO 3 substitution for Cl produced an initial depolarization followed by a return to the original resting potential within 10 min; readdition of 25 mM Cl transiently hyperpolarized the muscle markedly, followed by a return to the originalE m. These data indicate that Cl is passively distributed and does not contribute to the steady-state resting potential in this vascular muscle. The data also suggest that the relatively lowE m in this arterial muscle is not due to a low [K]i, but is due to a highP Na/P K ratio, presumably related to a low K+ conductance (g K). Since Ba2+ and TEA+ are known to decrease restingg K and K+ activation, the data also suggest that K+ activation could inhibit action potential generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D. K.: Cell potential and the sodium-potassium pump in vascular smooth muscle. Fed. Proc.35, 1294–1297 (1976)

    Google Scholar 

  2. Axelsson, J., Phil, P., Wahlström, B., Johansson, B., Jonsson, O.: Influence of the ionic environment on spontaneous electrical and mechanical activity of the rat portal vein. Circ. Res.21, 609–618 (1967)

    Google Scholar 

  3. Bently, P. J.: Amiloride: a potent inhibitor of sodium transport across the toad bladder. J. Physiol. (Lond.)195, 317–322 (1968)

    Google Scholar 

  4. Bloom, W., Fawcett, D. W.: A textbook of Histology, Chapter 8, pp. 187–212. Philadelphia: W. B. Saunders Co. 1962

    Google Scholar 

  5. Carmeliet, E., Verdonck, F.: Reduction of potassium permeability by chloride substitution in cardiac cells. J. Physiol. (Lond.)265, 193–206 (1977)

    Google Scholar 

  6. Carmeliet, E., Horres, C. R., Lieberman, M., Vereecke, J. S.: Departmental aspects of potassium flux and permeability in embryonic chick heart. J. Physiol. (Lond.)254, 673–692 (1976)

    Google Scholar 

  7. Casteels, R.: Calculation of the membrane potential in smooth muscle cells of the guinea pig's taenia coli by the Goldman equation. J. Physiol. (Lond.)205, 193–208 (1969)

    Google Scholar 

  8. Casteels, R., Kitamura, K., Kuriyama, H., Suzuki, H.: The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J. Physiol. (Lond.)271, 41–61 (1977)

    Google Scholar 

  9. Casteels, R., Kitamura, K., Kuriyama, H., Suzuki, H.: Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J. Physiol. (Lond.)271, 63–79 (1977)

    Google Scholar 

  10. Droogman, G., Casteels, R.: Membrane potential and ion transport in smooth muscle cells. In: Physiology of smooth muscle (E. Bülbring, M. F. Shuba, eds.), pp. 11–18. New York: Raven Press 1976

    Google Scholar 

  11. Eisenberg, R. S., Johnson, E. A.: Three-dimensional electrical field problems. Prog. Biophysics Mol. Biol.20, 1–65 (1970)

    Google Scholar 

  12. Funaki, S., Bohr, D. R.: Electrical and mechanical activity of isolated vascular smooth muscle of rat. Nature203, 192–194 (1964)

    Google Scholar 

  13. Haljamäe, H., Johansson, B., Jonsson, B., Röckert, H.: The distribution of sodium, potassium and chloride in the smooth muscle of the rat portal vein. Acta Physiol. Scand.78, 255–268 (1970)

    Google Scholar 

  14. Handler, J. S., Preston, A. S., Orloff, J.: Effect of ADH, aldosterone, ouabain and amiloride on toad bladder epithelial cells. Am. J. Physiol.222, 1071–1074 (1972)

    Google Scholar 

  15. Hendrickx, H., Casteels, R.: Electrogenic sodium pump in arterial smooth muscle cells. Pflügers Arch.346, 299–306 (1974)

    Google Scholar 

  16. Hermsmeyer, K.: Ba2+ and K+ alteration of K+ conductance in spontaneously active vascular muscle. Am. J. Physiol.230, 1031–1036 (1976)

    Google Scholar 

  17. Hermsmeyer, K., Sperelakis, N.: Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba2+. Am. J. Physiol.219, 1108–1114 (1970)

    Google Scholar 

  18. Hermsmeyer, K., Walton, S.: Specificity of altered electrogenesis of membrane potential in hypertension. Circ. Res., Suppl. 1,40, 153–156 (1977)

    Google Scholar 

  19. Ito, Y., Kuriyama, H., Sakamoto, Y.: Effects of tetraethylammonium chloride on the membrane activity of guinea pig stomach smooth muscle. J. Physiol. (Lond.)211, 445–460 (1970)

    Google Scholar 

  20. Johansson, B.: Vascular smooth muscle: biophysics. In: Microcirculation (B. M. Altura and F. Kaley, eds.), Chapter 3. Baltimore: University Park Press 1977

    Google Scholar 

  21. Kirkpatrick, C. T.: Excitation and contraction in bovine tracheal smooth muscle. J. Physiol. (Lond.)244, 263–281 (1975)

    Google Scholar 

  22. Kuriyama, H.: The influence of sodium, potassium and chloride on the membrane potential in the smooth muscle of taenia coli. J. Physiol. (Lond.)166, 15–28 (1963)

    Google Scholar 

  23. Kuriyama, H.: Effects of ions and drugs on electrical activity of smooth muscle. In: Smooth muscle (E. Bulbring, A. F. Brading, A. W. Jones, T. Tomita, eds.), pp. 366–396. London: Arnold Ltd. 1970

    Google Scholar 

  24. Kuriyama, H., Ohshima, K., Sakamoto, Y.: The membrane properties of smooth muscle of the guinea pig portal vein in isotonic and hypertonic solutions. J. Physiol. (Lond.)217, 179–199 (1971)

    Google Scholar 

  25. Matthews, E. K., Sutter, M. C.: Ouabain-induced changes in the contractile and electrical activity, potassium content, and response of drugs of smooth muscle cells. Can. J. Physiol. Pharmacol.45, 509–520 (1967)

    Google Scholar 

  26. Mekata, F.: Current spread in the smooth muscle of the rabbit aorta. J. Physiol. (Lond.)242, 143–155 (1974)

    Google Scholar 

  27. Mekata, F., Niu, H.: Biophysical effects of adrenaline on the smooth muscle of the rabbit common carotid artery. J. Gen. Physiol.59, 92–102 (1972)

    Google Scholar 

  28. Nagel, W., Dörge, A.: Effect of amiloride on sodium transport in frog skin. Action of intracellular sodium content. Pflügers Arch.318, 84–92 (1970)

    Google Scholar 

  29. Sakamoto, Y.: Membrane activity of the guinea pig stomach muscle following barium replacement of calcium ion. Jap. J. Physiol.20, 610–625 (1970).

    Google Scholar 

  30. Schanne, O., Kawata, H., Schäfer, B., Lavallée, M.: A study on the electrical resistance of the frog sartorius muscle. J. Gen. Physiol.49, 897–912 (1966)

    Google Scholar 

  31. Schoffeniels, E.: Ionic composition of the arterial wall. Angiologica6, 65–88 (1969)

    Google Scholar 

  32. Schultz, C. Z., Frizzell, R. A., Nellams, H. N.: Active transport and the electrophysiology of rabbit colon. J. Membr. Biol.33, 351–384 (1977)

    Google Scholar 

  33. Siegel, G., Roedel, H., Nolte, J., Hofer, N. W., Bertsche, O.: Ionic composition and ion exchange in vascular smooth muscle. In: Physiology of smooth muscle (E. Bülbring, M. F. Shuba, eds.), pp. 19–41. New York: Raven Press 1976

    Google Scholar 

  34. Sperelakis, N., Lehmkuhl, D.: Effect of current on trasmembrane potentials in cultured chick heart cells. J. Gen. Physiol.47, 895–927 (1964)

    Google Scholar 

  35. Sperelakis, N., Shigenobu, K.: Changes in membrane properties of chick embryonic hearts during development. J. Gen. Physiol.60, 430–453 (1972)

    Google Scholar 

  36. Sperelakis, N., Schneider, M. F., Harris, E. J.: Decreased K+ conductance produced by Ba2+ in frog sartorius fibers. J. Gen. Physiol.50, 1565–1583 (1967)

    Google Scholar 

  37. Steedman, W. M.: Microelectrode studies on small mammalian arteries. Bibl. Anat.8, 25–29 (1966)

    Google Scholar 

  38. Tarr, M., Sperelakis, N.: Weak electrotonic interaction between contigous cardiac cells. Am. J. Physiol.207, 691–700 (1964)

    Google Scholar 

  39. Uvelius, B., Sigurdsson, B., Johansson, B.: Strontium and barium as substitutes for calcium on electrical and mechanical activity of rat portal vein. Blood Vessels11, 245–259 (1974)

    Google Scholar 

  40. Von Loh, D., Bohr, D. F.: Membrane potential of smooth muscle cells of isolated resistance vessels. Proc. Soc. Exp. Biol. Med.144, 513–516 (1973)

    Google Scholar 

  41. Wahlström, B. A., Svennerholm, B.: Potentiation and inhibition of noradrenaline-induced contractions of the rat portal vein in anion substituted solution. Acta Physiol. Scand.92, 404–411 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harder, D.R., Sperelakis, N. Membrane electrical properties of vascular smooth muscle from the guinea pig superior mesenteric artery. Pflugers Arch. 378, 111–119 (1978). https://doi.org/10.1007/BF00584443

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584443

Key words

Navigation