Skip to main content
Log in

Levels of trehalose and glycogen inArthrobacter globiformis under conditions of nutrient starvation and osmotic stress

  • Research Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Cells ofArthrobacter globiformis grown in carbohydrate-rich media were found to contain large quantities of low-Mr carbohydrates (800 μg/mg protein) and only small amounts of amino acids, in addition to high amounts of glycogen (2 mg/mg protein). At increasing osmotic values of the medium, low-Mr carbohydrate levels increased to 1300 μg/mg protein. Low-Mr pools were extracted from the cells with hot 75% ethanol, and subjected to thin layer, gel and gas-liquid chromatography. They turned out to consist mainly of α,α-trehalose. Levels of trehalose inArthrobacter cells have the tendency to remain constant, both during nutrient exhaustion (resulting in glycogen consumption), and on addition of excess of carbon source to the medium (resulting in an increased glycogen content of the cells). The stress-tolerant properties ofArthrobacter (resistance to nutrient starvation, desiccation and high salt concentration) are discussed with respect to the high glycogen and trehalose contents of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad ZI, Alden JR & Montaque MD (1980) The occurrence of trehalose inMicrococcus species. J. Gen. Microbiol. 121: 483–486

    Google Scholar 

  • Botsford JL & Lewis TA (1990) Osmoregulation inRhizobium meliloti: production of glutamic acid in response to osmotic stress. Appl. Environm. Microbiol. 56: 488–494

    Google Scholar 

  • Boylen CW & Ensign JC (1970a) Long-term starvation survival of rod and spherical cells ofArthrobacter crystallopoietes. J. Bact. 103: 569–577

    Google Scholar 

  • Boylen CW & Ensign JC (1970b)_Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells ofArthrobacter crystallopoietes. J. Bact. 103: 578–587

    Google Scholar 

  • Boylen CW (1973) Survival ofArthrobacter crystallopoietes during prolonged periods of extreme desiccation. J. Bact. 113: 33–37

    Google Scholar 

  • Breedveld HW, Zevenhuizen LPTM & Zehnder AJB (1990) Osmotically induced oligo-and polysaccharide synthesis byRhizobium meliloti SU-47. J. Gen. Microbiol. 136: 2511–2519

    Google Scholar 

  • Crowe JH & Crowe LM (1986) Stabilization of membranes in anhydrobiotic organisms. In: Leopold AC (Ed) Membranes, Metabolism and Dry Organisms (pp 188–209). Comstock Publishing Associates, Ithaca & London

    Google Scholar 

  • Elbein AD (1967) Carbohydrate metabolism inStreptomyces. II. Isolation and enzymic synthesis of trehalose. J. Bact. 94: 1520–1524

    Google Scholar 

  • Elbein AD & Mitchell M (1973) Levels of glycogen and trehalose inMycobacterium smegmatis and the purification and properties of the glycogen synthetase. J. Bact. 113: 863–873

    Google Scholar 

  • Elbein AD (1974) The metabolism of α,α-trehalose. Adv. Carbohydr. Chem. Biochem. 30: 227–256

    Google Scholar 

  • Harris PJ, Henry RJ, Blakeney AB & Stone BA (1984) An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr. Res. 127: 59–73

    Google Scholar 

  • Herbert D, Phipps PJ & Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR & Ribbons DW (Eds) Methods in Microbiology, Vol 5B (pp 209–344). Academic Press. London & New York

    Google Scholar 

  • Hoelzle I & Streeter JG (1989) Higher trehalose accumulation in rhizobia under salt stress. Abst. Meeting Am. Soc. Plant Physiol., Toronto, Ontario, Canada, Abstract 703

  • Hoelzle I & Streeter JG (1990) Increased accumulation of trehalose inRhizobia cultured under 1% oxgyen. Appl. Environm. Microbiol. 56: 3213–3215

    Google Scholar 

  • Larsen PI, Sydnes LK, Landfeld B & Strøm AR (1987) Osmoregulation inEscherichia coli by accumulation of organic osmolytes: betaines, glutamic acid and trehalose. Arch. Microbiol. 147: 1–7

    Google Scholar 

  • Lopez MF, Fontaine MS & Torrey JG (1984) Levels of trehalose and glycogen inFrankia sp. HFPArI3 (Actinomycetales). Can. J. Microbiol. 30: 746–752

    Google Scholar 

  • Mackay MA, Norton RS & Borowitzka LJ (1984) Organic osmoregulatory solutes inCyanobacteria. J. Gen. Microbiol. 130: 2177–2191

    Google Scholar 

  • Madkour MA, Tombras Smith L & Smith GM (1990) Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl. Environ. Microbiol. 56: 2876–2881

    Google Scholar 

  • Mulder EG & Antheunisse J (1963) Morphologie, physiologie et écologie desArthrobacter. Ann. Inst. Pasteur 104: 46–74

    Google Scholar 

  • Mulder EG, Adamse AD, Antheunisse J, Deinema MH, Woldendorp JW & Zevenhuizen LPTM (1966) The relationship betweenBrevibacterium linens and bacteria of the genusArthrobacter. J. Appl. Bact. 29: 44–71

    Google Scholar 

  • Mulder EG & Zevenhuizen LPTM (1967) Coryneform bacteria of theArthrobacter type and their reserve material. Arch. Microbiol. 59: 345–354

    Google Scholar 

  • Richtmeyer NK (1962) α,α-Trehalose (α-d-glucopyranosyl-α-d-glucopyranoside) dihydrate. In: Whistler RL & Wolfrom ML (Eds) Methods in Carbohydrate Chemistry (pp 370–372). Academic Press, New York & London

    Google Scholar 

  • Schimz KL, Irrgang K & Overhoff B (1985) Trehalose, a cytoplasmic reserve disaccharide ofCellulomonas sp. DSM20108: its identification, carbon source dependent accumulation and degradation during starvation. FEMS Microbiol. Letters 30: 165–169

    Google Scholar 

  • Schimz KL & Overhoff B (1987) Investigations of the influence of carbon starvation on the carbohydrate storage compounds (trehalose, glycogen), viability, adenylate pool and adenylate energy charge inCellulomonas sp. (DSM 20108). FEMS Microbiol. Letters 40: 333–337

    Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J. Biol. Chem. 195: 19–23

    Google Scholar 

  • Stjernholm R (1958) Formation of trehalose during dissimilation of glucose byPropionibacterium. Acta Chim. Scand. 12: 646–649

    Google Scholar 

  • Streeter JG (1985) Accumulation of α,α-trehalose byRhizobium bacteria and bacteroids. J. Bact. 164: 78–84

    Google Scholar 

  • Welsh DT, Reed RH & Herbert RA (1991) The role of trehalose in the osmoadaptation ofEscherichia coli NCIB 9484: interaction of trehalose, K+ and glutamate during osmoadaptation in continuous culture. J. Gen. Microbiol. 137: 745–750

    Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. A. van Leeuwenhoek 58: 209–217

    Google Scholar 

  • Zevenhuizen LPTM (1966a) Formation and function of the glycogen-like polysaccharide ofArthrobacter. A. van Leeuwenhoek 32: 356–372

    Google Scholar 

  • Zevenhuizen LPTM (1966b) Function, structure and metabolism of the intracellular polysaccharide ofArthrobacter. Thesis, Amsterdam. Also in: Meded. Landbouwhogeschool (Wageningen) 66–10

  • Zevenhuizen LPTM & Ebbink AG (1974) Interrelationships between glycogen, poly-β-hydroxybutyric acid and lipids during accumulation and subsequent utilization in aPseudomonas. A. van Leeuwenhoek 40: 103–120

    Google Scholar 

  • Zevenhuizen LPTM (1981) Cellular glycogen, β-1,2-glucan, poly-β-hydroxybutyric acid and extracellular polysaccharides in fast-growing species ofRhizobium. A. van Leeuwenhoek 47: 481–497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zevenhuizen, L.P.T.M. Levels of trehalose and glycogen inArthrobacter globiformis under conditions of nutrient starvation and osmotic stress. Antonie van Leeuwenhoek 61, 61–68 (1992). https://doi.org/10.1007/BF00572124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572124

Key words

Navigation