Skip to main content
Log in

Modulation of the effects of salbutamol by propranolol and atenolol

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Six healthy volunteers were given single oral doses of 8 mg salbutamol, 40 mg propranolol, 100 mg atenolol, 8 mg salbutamol plus 40 mg propranolol and 8 mg salbutamol plus 100 mg atenolol, in a placebo controlled study.

Plasma potassium fell following salbutamol and rose following atenolol or propranolol, and the hypokalaemic effect of salbutamol was reversed more effectively by propranolol than by atenolol. Although blood glucose rose after salbutamol, it was unaffected by any of the other treatments. Lying and standing pulse rate rose after salbutamol and fell equally after either β-adrenoceptor antagonist, and fell more after salbutamol plus propranolol than after salbutamol plus atenolol. Blood pressure rose after salbutamol and fell after each of the other treatments.

Forty milligrams propranolol was thus more effective than 100 mg atenolol in reversing the metabolic effects of 8 mg salbutamol, and was as effective in reversing the cardiovascular effects. In cases of symptomatic salbutamol overdose, propranolol should be considered as an antidote provided the patient is not asthmatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin DN, Henry JA (1985) Propranolol administration in theophylline overdose. Lancet 1: 520–521

    Google Scholar 

  • Berend N, Marlin GE (1978) Characterisation of β-adrenoceptor subtype mediating the metabolic actions of salbutamol. Br J Clin Pharmacol 5: 207–211

    Google Scholar 

  • Berglund G, Andersson O, Larsson O, Wilhelmsen L (1976) Antihypertensive effect and side-effects of bendroflumethiazide and propranolol. Acta Med Scand 199: 499–506

    Google Scholar 

  • Bethune DW, McKay R (1978) Paradoxical changes in serum potassium during cardiopulmonary bypass in association with non-cardioselective beta blockade. Lancet 2: 380–381

    Google Scholar 

  • Brittain RT, Farmer JB, Jack D, Martin LE, Simpson WT (1968) α-[(t-butylamino)methyl]-4-hydroxy-m-xylene-α1, α3-diol (AH.3365): A selective β-adrenergic stimulant. Nature 219: 862–863

    Google Scholar 

  • Buur T, Clausen T, Holmberg E, Johansson U, Waldeck B (1982) Desensetisation by terbutaline of beta-adrenoceptors in the guinea-pig soleus muscle: Biochemical alterations associated with functional changes. Br J Pharmacol 76: 313–317

    Google Scholar 

  • Clausen T (1983) Adrenergic control of Na+-K+-homeostasis. Acta Med Scand 672: [Suppl] 111–115

    Google Scholar 

  • Clausen T, Flatman JA (1980) β2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Br J Pharmacol 68: 749–755

    Google Scholar 

  • Connell JMC, Cook GM, McInnes GT (1982) Metabolic consequences of salbutamol poisoning reversed by propranolol. Br Med J 285: 779

    Google Scholar 

  • Corea L, Bentivoglio M, Verdecchia P (1981) Hypokalaemia due to salbutamol overdosage. Br Med J 283: 500

    Google Scholar 

  • Frishman W (1979) Clinical pharmacology of the new beta-adrenergic blocking drugs, part 1. Pharmacodynamic and pharmacokinetic properties. Am Heart J 97: 663–670

    Google Scholar 

  • Gaudreault P, Guay J (1986) Theophylline poisoning. Pharmacological considerations and management. Med Toxicol 1: 169–191

    Google Scholar 

  • Leitch AG, Clancy LJ, Costello JF, Flenley DC (1976) Effect of intravenous infusion of salbutamol on ventilatory response to carbon dioxide and hypoxia and on heart rate and plasma potassium in normal men. Br Med J 1: 365–367

    Google Scholar 

  • Leonetti G, Mayer G, Morganti A, Terzoli L, Zanchetti A, Bianchetti G, DiSalle E, Morselli PL, Chidsay CA (1975) Hypotensive and renin-supressing activities of propranolol in hypertensive patients. Clin Sci Mol Med 48: 491–499

    Google Scholar 

  • Lipworth BJ, Clark RA, Dhillon DP, Fraser CG, McDevitt DG (1988) Metabolic effects of cumulative doses of salbutamol from a metered-dose inhaler in bronchial asthma. Br J Clin Pharmacol 25: 667–668

    Google Scholar 

  • McAinsh J (1977) Clinical pharmacokinetics of atenolol. Postgrad Med J 53 [Suppl 3]: 74–78

    Google Scholar 

  • Mills GA, Horn JR (1985) β-blockers and glucose control. Drug Intell Clin Pharm 19: 246–251

    Google Scholar 

  • Minneman KP, Hegstrand LR, Molinoff PB (1979) The pharmacological specificity of beta1- and beta2-adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol 16: 21–33

    Google Scholar 

  • Neville A, Palmer JBD, Gaddie J, May CS, Palmer KNV, Murchison LE (1977) Metabolic effects of salbutamol: Comparison of aerosol and intravenous administration. Br Med J 1: 413–414

    Google Scholar 

  • Nogrady SG, Hartley JPR, Seaton A (1977) Metabolic effects of intravenous salbutamol in the course of acute severe asthma. Thorax 32: 559–562

    Google Scholar 

  • O'Brien IAD, Fitzgerald-Fraser J, Lewin IG, Corrall RJM (1981) Hypokalaemia due to salbutamol overdosage. Br Med J 282: 1515–1516

    Google Scholar 

  • Pedersen G, Pederson A, Pederson EB (1979) Effect of propranolol on total exchangeable body potassium and total exchangeable body sodium in essential hypertension. Scand J Clin Lab Invest 39: 167

    Google Scholar 

  • Petch MC, McKay R, Bethune DW (1979) Biochemical effects of beta2-adrenergic blockade in patients undergoing cardiopulmonary bipass. Br Heart J 42: 240

    Google Scholar 

  • Petch MC, McKay R, Bethune DW (1981) The effect of beta2 adrenergic blockade on serum potassium and glucose levels during open heart surgery. Eur Heart J 2: 123–126

    Google Scholar 

  • Phillips PJ, Vedig AE, Jones PL, Chapman MG, Collins M, Edwards JB, Smeaton TC, McL Duncan B (1980) Metabolic and cardiovascular side effects of the β2-adrenoceptor agonists salbutamol and rimiterol. Br J Clin Pharmacol 9: 483–491

    Google Scholar 

  • Porte D, Graber AL, Kuzuya T, Williams RH (1966) The effect of epinephrine on immunoreactive insulin levels in man. J Clin Invest 45: 228–236

    Google Scholar 

  • Raptis S (1982) Effects of cardioselective and non-selective beta-adrenoceptor blockade on glycogenolysis, lipolysis and growth hormone secretion. Br J Clin Pharmacol 13: 419S-420S

    Google Scholar 

  • Rosa RM, Silva P, Young JB, Landsberg L, Brown RS, Rowe JW, Epstein FH (1980) Adrenergic modulation of extrarenal potassium disposal. N Engl J Med 302: 431–434

    Google Scholar 

  • Routledge PA, Shand DG (1979) Clinical pharmacokinetics of propranolol. Clin Pharmacokinet 4: 73–90

    Google Scholar 

  • Shand DG, Nuckolls EM, Oates JA (1970) Plasma propranolol levels in adults with observations in four children. Clin Pharmacol Ther 11: 112–120

    Google Scholar 

  • Smith SR, Kendall MJ (1984) Metabolic responses to beta2-stimulants. J R Coll Physicians London 18: 190–194

    Google Scholar 

  • Smith S, Ryder C, Kendall MJ, Holder R (1984) Cardiovascular and biochemical responses to nebulised salbutamol in normal subjects. Br J Clin Pharmacol 18: 641–644

    Google Scholar 

  • Struthers AD, Reid JL, Whitesmith R, Rodger JC (1983) The effects of cardioselective and non-selective β-adrenoceptor blockade on the hypokalaemic and cardiovascular response to adrenomedullary hormones in man. Clin Sci 65: 143–147

    Google Scholar 

  • Taylor MW, Gaddie J, Murchison LE, Palmer KNV (1976) Metabolic effects of oral salbutamol. Br Med J 1: 22

    Google Scholar 

  • Vick RL, Todd EP, Luedke DW (1972) Epinephrine-induced hypokalaemia: Relation to liver and skeletal muscle. J Pharmacol Exp Ther 181: 139–146

    Google Scholar 

  • Wilcox RG, Mitchell JRA (1977) Contribution of atenolol, bendrofluazide, and hydrallazine to management of severe hypertension. Br Med J 2: 547–550

    Google Scholar 

  • Whyte KF, Addis GJ, Whitesmith R, Reid JL (1987) The mechanism of salbutamol-induced hypokalaemia. Br J Clin Pharmacol 23: 65–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minton, N.A., Baird, A.R. & Henry, J.A. Modulation of the effects of salbutamol by propranolol and atenolol. Eur J Clin Pharmacol 36, 449–453 (1989). https://doi.org/10.1007/BF00558068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00558068

Key words

Navigation