Skip to main content
Log in

Theoretical studies on the conformation of saccharides

VII. Structure and stereochemistry of α- and β-d-glucopyranose in solution

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The stereochemistry of d-glucopyranose has been studied theoretically in 11 solvents. The stability of the individual conformers in solution has been compared using a method in which the total energy is divided into the energy of an isolated molecule and the solvation energy. The structure and the energy of the isolated molecule have been estimated by geometry optimization using the PCILO quantum chemical method. The solvation energy consists of electrostatic, dispersion, and cavity terms which have been determined from calculated properties of the solute and physiochemical properties of the solvents. The influence of the solvent on rotation of the individual pendant groups and the stability of anomers have been investigated. The calculated composition of the anomeric mixture of d-glucopyranose in various solvents at 25°C (e.g., in pyridine 49% is α-anomer, in dimethyl sulfoxide 46%, and in water 32%) is in good agreement with the available experimental data and clearly demonstrates that the solvation properties of α- and β-d-glucopyranose differ. Based on the calculated abundances of anomers the magnitude of the anomeric effect has been estimated and compared with the results of corresponding calculations on other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brant DA (1980) The biochemistry of plants, vol 3. Preiss J (ed) Academic Press, New York, pp 425–471

    Google Scholar 

  2. Franks F (1979) Polysaccharides in foods. Blanshard JMV (ed) Butterworth, London, pp 33–49

    Google Scholar 

  3. Cesaro A (in print) Chemical thermodynamic data for the biological sciences. Hinz HJ (ed) Academic Press, New York

  4. Angyal SJ (1968) Aust J Chem 21:2737–2746

    Google Scholar 

  5. Tvaroška I, Kožár T (1980) J Am Chem Soc 102:6929–6936

    Google Scholar 

  6. Tvaroška I (1982) Biopolymers 21:1887–1897

    Google Scholar 

  7. Tvaroška I (1984) Biopolymers 23:1951–1960

    Google Scholar 

  8. Tvaroška I (1984) Collect Czech Chem Commun 49:345–354

    Google Scholar 

  9. Tvaroška I (1984) Chem Zvesti 38:189–197

    Google Scholar 

  10. Diner S, Malrieu JP, Jordan F, Gilbert M (1969) Theor Chim Acta 15:100–110

    Google Scholar 

  11. Brown GM, Levy HA (1965) Science 147:1038–1039

    Google Scholar 

  12. Arnott S, Scott WE (1972) J Chem Soc Perkin Trans II:324–335

    Google Scholar 

  13. Tvaroška I, Kožár T (1981) Carbohydr Res 90:173–185

    Google Scholar 

  14. Pierotti RA (1976) Chem Rev 76:717–726

    Google Scholar 

  15. Abraham RJ, Bretschneider E (1974) Internal rotation in molecules, Chap 13. Orville-Thomas WJ (ed) Academic Press, London

    Google Scholar 

  16. Handbook of Chemistry and Physics, 55th edn (1974) CRC Press, Cleveland, Ohio

  17. Matsumoto A, Takasuka M (1985) Carbohydr Res 137:13–20

    Google Scholar 

  18. Jeffrey GA, Yates JH (1981) Carbohydr Res 96:205–213

    Google Scholar 

  19. Melberg S, Rasmussen K (1978) Acta Chem Scand A32:187–188

    Google Scholar 

  20. Franks F, Reid DS, Suggett A (1973) J Solution Chem 2:99–118

    Google Scholar 

  21. Hough E, Neidle S, Rogers D, Throughton PGH (1973) Acta Crystallogr B29:365–367

    Google Scholar 

  22. Chu SSC, Jeffrey GA (1968) Acta Crystallogr B24:830–834

    Google Scholar 

  23. Perez S, Marchessault RH (1979) Biopolymers 18:2369–2374

    Google Scholar 

  24. Woodcock C, Sarko A (1980) Macromolecules 13:1183–1187

    Google Scholar 

  25. Streefkerk DG, De Bie MJA, Vliegenthart JFG (1973) Tetrahedron 29:833–844

    Google Scholar 

  26. De Bruyn A, Anteunis M (1976) Carbohydr Res 47:311–314

    Google Scholar 

  27. Mathlouthi M, Luu DV (1980) Carbohydr Res 81:203–212

    Google Scholar 

  28. Brewster JH (1959) J Am Chem Soc 81:5475–5483

    Google Scholar 

  29. Hill AS, Shallenberger RS (1969) Carbohydr Res 11:541–545

    Google Scholar 

  30. Dunfield LG, Whittington SG (1977) J Chem Soc Perkin Trans II:654–658

    Google Scholar 

  31. Rasmussen K (1982) Acta Chem Scand A36:323–327

    Google Scholar 

  32. Neely WB (1969) J Med Chem 12:16–17

    Google Scholar 

  33. Tvaroška I, Kožár T (1983) Int J Quantum Chem 23:765–778

    Google Scholar 

  34. Tait MJ, Suggett A, Franks F, Ablett S, Quickenden PA (1972) J Solution Chem 1:131–151

    Google Scholar 

  35. Suggett A, Clark AH (1976) J Solution Chem 5:1–15

    Google Scholar 

  36. Suggett A, Ablett S, Lillford PJ (1976) J Solution Chem 5:17–31

    Google Scholar 

  37. Suggett A (1976) J Solution Chem 5:33–46

    Google Scholar 

  38. Harvey JM, Symons MCR (1978) J Solution Chem 7:571–586

    Google Scholar 

  39. Casu B, Reggiani M, Gallo GG, Vivegani A (1966) Tetrahedron 22:3061–3083

    Google Scholar 

  40. Jasra RV, Ahluwalia JC (1982) J Solution Chem 11:325–338

    Google Scholar 

  41. Eliel EL, Allinger NL, Angyal SJ, Morrison GA (1965) Conformational analysis. Wiley-Interscience, New York pp 435–442

    Google Scholar 

  42. Tvaroška I (1986) Theoretical chemistry of biological systems. Náray-Szabó G (ed) Elsevier, Amsterdam, 283–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tvaroška, I., Kožár, T. Theoretical studies on the conformation of saccharides. Theoret. Chim. Acta 70, 99–114 (1986). https://doi.org/10.1007/BF00532207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00532207

Key words

Navigation