Skip to main content
Log in

The theory of the Taylor dispersion technique for liquid diffusivity measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents a complete analysis of the theory of an instrument to measure the diffusion coefficients in liquid mixtures based upon the phenomenon of Taylor dispersion. The analysis demonstrates that it is possible to design an instrument that operates very nearly in accordance with the simplest mathematical description of the dispersion of a solute pulse in a fluid in laminar flow within a straight, circular cross-section tube. The small departures of a practical instrument from the ideal are evaluated as corrections by means of a general perturbation treatment that allows them to be examined one at a time. The corrections considered include the effects of the finite volume of the injection pulse, the finite volume of the concentration monitor, the coiling of the tube, and the nonuniformity and noncircularity of the cross section, as well as the variation of the fluid properties with composition. All the equations necessary for the design of an instrument of this type, and for the evaluation of experimental data free from significant systematic errors, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Treybal, Mass Transfer Operations, 2nd ed. (McGraw-Hill, New York, 1968).

    Google Scholar 

  2. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53:3813 (1970).

    Google Scholar 

  3. E. R. Pike, Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds., NATO Advanced Study Institute Series (Plenum, London, 1974), p. 5.

    Google Scholar 

  4. H. J. V. Tyrrell and P. J. Watkiss, Ann. Rep. Chem. Soc., A, 35 (1976).

  5. C. Durou, C. Moutou, and J. Makenc, J. Chim. Phys. 71:2171 (1974).

    Google Scholar 

  6. G. I. Taylor, Proc. Roy. Soc. A219:186 (1953).

    Google Scholar 

  7. A. C. Ouano, Ind. Eng. Chem. Fundam. 11:268 (1972).

    Google Scholar 

  8. K. C. Pratt and W. A. Wakeham, Proc. Roy. Soc. A336:393 (1974).

    Google Scholar 

  9. E. Grushka and V. R. Maynard, J. Phys. Chem. 77:1437 (1973).

    Google Scholar 

  10. K. C. Pratt, D. H. Slater, and W. A. Wakeham, Chem. Eng. Sci. 28:1901 (1973).

    Google Scholar 

  11. H. Komiyama and J. M. Smith, J. Chem. Eng. Data 19:384 (1974).

    Google Scholar 

  12. V. Hancil, V. Rod, and M. Rosenbaum, Chem. Eng. Commun. 3:155 (1979).

    Google Scholar 

  13. R. Aris, Proc. Roy. Soc. A235:67 (1956).

    Google Scholar 

  14. K. C. Pratt and W. A. Wakeham, Proc. Roy Soc. A342:401 (1975).

    Google Scholar 

  15. O. Levenspiel and W. K. Smith, Chem. Eng. Sci. 6:227 (1957).

    Google Scholar 

  16. T. Yano and T. Aratani, Seigyo Kogaku 12:18 (1968).

    Google Scholar 

  17. C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors (Marcel Dekker, New York, 1975).

    Google Scholar 

  18. D. J. McConalogue, Proc. Roy. Soc. A315:99 (1970).

    Google Scholar 

  19. M. E. Erdogan and P. C. Chatwin, J. Fluid Mech. 29:465 (1967).

    Google Scholar 

  20. R. J. Nunge, T. S. Lin, and W. N. Gill, J. Fluid Mech. 51:363 (1972).

    Google Scholar 

  21. L. A. M. Janssen, Chem. Eng. Sci. 31:215 (1976).

    Google Scholar 

  22. W. R. Dean, Phil. Mag. 5:673 (1928).

    Google Scholar 

  23. H. C. Topakoglu, J. Math. Mech. 16:1321 (1969).

    Google Scholar 

  24. H. Schlichting, Boundary Layer Theory, 6th ed. (McGraw-Hill, New York, 1968), Chapter VI.

    Google Scholar 

  25. E. Th. Van der Laan, Chem. Eng. Sci. 7:187 (1958).

    Google Scholar 

  26. M. R. Hopkins, Proc. Phys. Soc. 50:703 (1938).

    Google Scholar 

  27. N. G. Barton, J. Fluid Mech. 74:81 (1976).

    Google Scholar 

  28. N. G. Barton, J. Fluid Mech. 74:91 (1976).

    Google Scholar 

  29. R. Smith, J. Fluid Mech. 88:323 (1978).

    Google Scholar 

  30. W. A. Wakeham, Discuss. Farad. Soc. 15 (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, A., Nieto de Castro, C.A. & Wakeham, W.A. The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int J Thermophys 1, 243–284 (1980). https://doi.org/10.1007/BF00517126

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00517126

Key words

Navigation