Skip to main content
Log in

Total organic carbon-calibrated mathematical model for a completely mixed activated sludge waste-water treatment process

  • Biotechnology and Bioengineering
  • Published:
European journal of applied microbiology and biotechnology Aims and scope Submit manuscript

Summary

A mathematical model for a total organic carbon-monitored, completely mixed activated sludge process for the treatment of a mixed domestic and laboratory waste water is discussed and experimentally calibrated. The first-order kinetic model was better suited to fit the experimental data than the Monod model. Values obtained for the sludge yield, Y, and the first-order kinetic constant, kL, agree with analogous data calculated from the literature. Hence, total organic carbon can be used, exclusively, to measure both organic waste load and biological solids, as an advantageous alternative to either biological oxygen demand, chemical oxygen demand, or volatile suspended solids, in monitoring, in deriving operational conditions, and/or in quantifying a mathematical description of a waste-water treatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

specific mortality coefficient (d−1)

BOD:

biological oxygen demand (mg O2×l −1)

BOD5 :

5-day BOD

COD:

chemical oxygen demand (mg O2×l −1)

d:

day

ke :

experimental constant for settling velocity (l×mg−1)

kL :

aggregate first-order kinetic constant = µmaxxKm -1 xY -1(l x mg-1 x d-1)

Km:

Michaelis-Menten saturation coefficient (mg×l −1)

Lb :

concentration of biodegradable organic load (mg×l −1)

Lnb :

concentration of nonbiodegradable oragnic load (mg×l −1)

Ms :

concentration of suspended solids (mg×l −1)

Q:

flow rate (l×h−1)

SS:

suspended solids (mg×l −1)

SVI:

sludge volume index (ml×g−1)

T:

temperature (°C)

t:

time (h or d)

TOC:

total organic carbon (mg C×l −1)

U:

specific substrate elimination rate (d−1)

V:

aeration tank volume (l)

v:

settling velocity (m×h−1)

vo :

experimental constant for settling velocity (m×h−1)

VSS:

volatile suspended solids (mg×l −1)

Y:

sludge yield (biomass produced per unit substrate removed)

γ:

thickening factor of the settler

ζ:

part of suspended solids remaining in outflow

η:

ratio between the hydraulic and sludge retention times

θ:

hydraulic retention time (h)

θ :

sludge retention time (d)

θ s :

maximum specific growth rate (d−1)

π:

wasting ratio

ρ:

recycle ratio

b:

biodegradable

e:

eliminated

nb:

nonbiodegradable

r:

plant outflow

Ro :

waste

R2 :

recycle

S:

soluble

susp:

suspended

T:

total

1:

inflow

3:

acrator outflow

References

  • Adams, C.E., Eckenfelder, W.W., Jr., Hovious, J.C. (1975). Water Res. 9, 37–42

    Google Scholar 

  • Busch, A.W. (1965). Proc. 20th Ind. Waste Conf., Eng. Bull. Purdue Univ., Extension Series No. 118, 457–469

  • Busch, A.W. (1966). Water Resour. Res. 2, 59–69

    Google Scholar 

  • Chandler, R.L., O'Shaughnessy, J.C., Blanc, F.C. (1976). J. Water Pollut. Control Fed. 48, 2791–2803

    Google Scholar 

  • Chiu, S.Y., Erickson, L.E., Fan, L.T., Kao, I.C. (1972). Biotechnol. Bioeng. 14, 207–231

    Google Scholar 

  • Eckenfelder, W.W., Jr. (1967). J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 93, 157–170

    Google Scholar 

  • Elmaleh, J., Ben Aim, R. (1976). Water Res. 10, 1005–1009

    Google Scholar 

  • Emery, R.M., Welch, E.B., Christman, R.F. (1971). J. Water Pollut. Control. Fed. 43, 1834–1844

    Google Scholar 

  • Ford, D.L. (1968). Proc. 23rd Ind. Waste Conf., Eng. Bull. Purdue Univ., Extension Series No. 132, 989–999

  • Gaudy, A.F., Jr., Srinivasaraghaven, R. (1974). Biotechnol. Bioeng. 16, 723–738

    Google Scholar 

  • Goodman, B.L., Englande, A.J. Jr. (1974). J. Water Pollut. Control Fed. 46, 312–332

    Google Scholar 

  • Johnston, M.B. (1974). Environ. Pollut. Management 4, No. 1

  • Jones, R.H. (1972). Water Wastes Eng. 9, 32–33

    Google Scholar 

  • Lamb, A., Tollefson, E.L. (1972). Canad. J. Chem. Eng. 50, 173–178

    Google Scholar 

  • Leithe, W. (1971). Chem. Ztg. 95, 465

    Google Scholar 

  • Loudenot, M. (1973). Technique Eau Assainissement 314, 19–27

    Google Scholar 

  • Masselli, J.W., Masselli, N.W., Burford, M.G. (1972). Text. Industries 136, 53–60

    Google Scholar 

  • Maier, W.J., McConnell, H.L. (1974). J. Water Pollut. Control Fed. 46, 623–633

    Google Scholar 

  • McKinney, R.E. (1974). Biotechnol. Bioeng. 16, 703–722

    Google Scholar 

  • McKinney, R.E., Ooten, R.J. (1969). Trans. 19th Ann. Conf. Sanitary Eng., R.E. McKinney, ed., Bull. Eng. Architecture, No. 60, 32–59

    Google Scholar 

  • Mynhier, M.D., Grady, C.P.L., Jr. (1975). J. Environ. Eng. Div., Am. Soc. Civ. Eng. 101, 829–846

    Google Scholar 

  • Schaffer, R.B., Van Hall, C.E., McDermont, G.N., Barth, D., Stenger, V.A., Sebesta, S.J., Griggs, S.H. (1965). J. Water Pollut. Control Fed. 37, 1545–1566

    Google Scholar 

  • Schroeder, E.D. (1971). Water Res. 5, 29–39

    Google Scholar 

  • Tyteca, D., Smeers, Y., Nyns, E.J. (1977). C.R.C. Crit. Rev. Environ. Control 8, 1–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Fonds de Développement Scientifique and the Commission du Tiers-Monde of the University of Louvain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, C.U., Tyteca, D. & Nyns, E.J. Total organic carbon-calibrated mathematical model for a completely mixed activated sludge waste-water treatment process. European J. Appl. Microbiol. Biotechnol. 6, 1–12 (1978). https://doi.org/10.1007/BF00500851

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500851

Keywords

Navigation