Skip to main content
Log in

Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The evolution and recombination of chloroplast genome structure in the fern genus Osmunda were studied by comparative restriction site mapping and filter hybridization of chloroplast DNAs (cpDNAs) from three species — 0. cinnamomea, 0. claytoniana and 0. regalis. The three 144 kb circular genomes were found to be colinear in organization, indicating that no major inversions or transpositions had occurred during the approximately 70 million years since their radiation from a common ancestor. Although overall size and sequence arrangement are highly conserved in the three genomes, they differ by an extensive series of small deletions and insertions, ranging in size from 50 bp to 350 by and scattered more or less at random throughout the circular chromosomes. All three chloroplast genomes contain a large inverted repeat of approximately 10 kb in size. However, hybridizations using cloned fragments from the 0. cinnamomea and 0. regalis genomes revealed the absence of any dispersed repeats in at least 50% of the genome. Analysis with restriction enzymes that fail to cleave the 10 kb inverted repeat indicated that each of the three fern chloroplast genomes exists as an equimolar population of two isomeric circles differing only in the relative orientation of their two single copy regions. These two inversion isomers are inferred to result from high frequency intramolecular recombination between paired inverted repeat segments. In all aspects of their general organization, recombinational heterogeneity, and extent of structural rearrangement and length mutation, these fern chloroplast genomes resemble very closely the chloroplast genomes of most angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich J, Cherny B, Merlin E, Williams C, Mets L (1985) Curr Genet 9:233–238

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bohnert HJ, Loffelhardt W (1982) FEBS Lett 150:403–406

    Google Scholar 

  • Bohnert HJ, Crouse EJ, Schmitt JM (1982) Encycl Plant Physiol 14B:475–530

    Google Scholar 

  • Bowman CM, Bonnard G, Dyer TA (1983) Theor Appl Genet 65:247–262

    Google Scholar 

  • Coates D, Cullis CA (1982) Plant Mol Biol 1:183–189

    Google Scholar 

  • Crouse EJ, Schmitt JM, Bohnert HJ (1985) Plant Mol Biol Rep 3:43–89

    Google Scholar 

  • De Heij HT, Lustig H, Moeskops DJM, Bovenberg WA, Bisanz C, Groot GSP (1983) Cuff Genet 7:1–6

    Google Scholar 

  • Fluhr R, Edelman M (1981) Nucleic Acids Res 9:6841–6853

    Google Scholar 

  • Fluhr R, Fromm H, Edelman M (1983) Gene 25:271–280

    Google Scholar 

  • Gelvin SB, Howell SH (1979) Mol Gen Genet 173:315–322

    Google Scholar 

  • Gillham NW, Boynton JE, Harris EH (1985) In: Cavalier-Smith T (ed) DNA and evolution; natural selection and genome size. Wiley, New York, pp 299–351

    Google Scholar 

  • Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1982) Theor Appl Genet 61:373–384

    Google Scholar 

  • Herrmann RG, Palta HK, Kowallik (1980) Planta 148:319–327

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1983) In: Ciferri 0, Dure L III (eds) Structure and function of plant genomes. Plenum Press, New York, pp 143–153

    Google Scholar 

  • Ko K, Strauss NA, Williams JP (1983) Curr Genet 7:255–263

    Google Scholar 

  • Lemieux B, Lemieux C (1985) Curr Genet 10:213–219

    Google Scholar 

  • Lemieux C, Turmel M, Lee RW, Bellemare G (1985a) Plant Mol Biol 5:77–84

    Google Scholar 

  • Lemieux C, Turmel M, Seligy VL, Lee RW (1985b) Curr Genet 9:139–145

    Google Scholar 

  • Miller CN (1967) Contrib Mus Paleontol Univ Mich 21:139–203

    Google Scholar 

  • Miller CN (1971) Contrib Mus Paleontol Univ Mich 23:105–169

    Google Scholar 

  • Mubumbila M, Gordon KHJ, Crouse EJ, Burkard G, Weil JH (1983) Gene 21:257–266

    Google Scholar 

  • Mubumbila M, Crouse EJ, Weil JH (1984) Curr Genet 8:379–385

    Google Scholar 

  • Mubumbila M, Bowman CM, Droog F, Dyer T, Kuntz M, Weil JH (1985) Plant Mol Biol 4:315–320

    Google Scholar 

  • Ohyama K, Yamano Y, Fukuzawa H, Komano T, Yamagishi H, Fujimoto S, Sugiura M (1983) Mol Gen Genet 189:1–9

    Google Scholar 

  • Palmer JD (1982) Nucleic Acids Res 10:1593–1605

    Google Scholar 

  • Palmer JD (1983) Nature (London) 301:92–93

    Google Scholar 

  • Palmer JD (1985a) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD (1985b) In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum Press, New York, pp 131–240

    Google Scholar 

  • Palmer JD (1985c) Methods Enyzmol 118:167–186

    Google Scholar 

  • Palmer JD, Stein DB (1982) Curr Genet 5:165–170

    Google Scholar 

  • Palmer JD, Stein DB (1986) Curr Genet 10:823–833

    Google Scholar 

  • Palmer JD, Thompson WF (1981) Proc Natl Acad Sci USA 78: 5533–5537

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Cell 29:537–550

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983a) Theor Appl Genet 65:181–189

    Google Scholar 

  • Palmer JD, Singh GP, Pillay DTN (1983b) Mol Gen Genet 190: 13–19

    Google Scholar 

  • Palmer JD, Osorio B, Watson JC, Edwards H, Dodd J, Thompson WF (1984) In: Thornber JP, Staehelin LA, Hallick RB (eds) Biosynthesis of the photosynthetic apparatus: molecular biology, development and regulation. Liss, (UCLA Symposia on Molecular and Cellular Biology, New series, vol 14) New York, pp 273–283

    Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985a) Genetics 109: 195–213

    Google Scholar 

  • Palmer JD, Boynton JE, Gillham NW, Harris EH (1985b) In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 269–278

    Google Scholar 

  • Rochaix JD (1978) J Mol Biol 126:597–617

    Google Scholar 

  • Salts Y, Herrmann RG, Peleg N, Lavi U, Izhar S, Frankel R, Beckmann JS (1984) Theor Appl Genet 69:1–14

    Google Scholar 

  • Spielmann A, Ortiz W, Stutz E (1983) Mol Gen Genet 190:5–12

    Google Scholar 

  • Stein DB, Thompson WF, Belford HS (1979) J Mol Evol 13: 215–232

    Google Scholar 

  • Takaiwa F, Sugiura M (1982) Nucleic Acids Res 10:2665–2676

    Google Scholar 

  • Vieira J, Messing J (1982) Gene 19:257–268

    Google Scholar 

  • Whitfeld PR, Bottomley W (1983) Annu Rev Plant Physiol 34: 279–310

    Google Scholar 

  • Zurawski G, Clegg MT, Brown AHD (1984) Genetics 106:735–749

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, D.B., Palmer, J.D. & Thompson, W.F. Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda . Curr Genet 10, 835–841 (1986). https://doi.org/10.1007/BF00418530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418530

Key words

Navigation