Skip to main content
Log in

Isotopic age and metamorphic history of the banded gneiss at Danmarkshavn, East Greenland

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Along the northern part of the East Greenland coast the Caledonian structures are superimposed on an older fold system called the “Carolinidian”. Traces of this Carolinidian belt are preserved in a few isolated fragments within the Caledonian fold belt. According to Haller (1970) one of these fragments exhibiting the typical Carolinidian NNW to NW-trending infrastructural folds is the peninsula of Germania Land which is accessible near the Danish weather station Danmarkshavn. The rock sampled there is a banded gneiss of granodioritic composition with steeply inclined, NNW-trending layers. Isotopic age determinations yielded essentially two groups of ages: 1) 3,000±150 m.y. (zircon suite and Rb/Sr whole rock analyses of layers) and 2) 320–380 m.y. (Rb/Sr mineral isochrons, U-Th-Pb on sphene, K/Ar on hornblende and biotite). The egg-shaped zircons support a sedimentary origin of the banded gneiss and in conjunction with the Rb/Sr whole rock ages determine the age of formation of the banded gneiss (or its last high grade metamorphism) some 3,000 m.y. ago. No other Precambrian metamorphism or orogeny is recorded in the rock. The ages between 320–380 m.y. date a thermal event of lower amphibolite facies grade related to a late Caledonian spasm.

The new isotopic data reveal the existence of very old rocks in the hinterland — away from the direction of thrusting—of the East Greenland Caledonian belt. With respect to the age of the Carolinidian fold system three geological interpretations are compatible with the results of this study:

  1. 1.

    the Carolinidian fold system formed approximately 3,000 m.y. ago;

  2. 2.

    the banded gneiss represents part of an old basement: the Carolinidian orogeny is younger than 3,000 m.y. Its marked structural imprint on the Danmarkshavn area was accompanied by very low grade metamorphism not recognised in the isotopic record;

  3. 3.

    the fold structures observed in the Danmarkshavn area are not of Carolinidian age but belong to an earlier fold system preserved in the basement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haller, J.: The Carolinides: an orogenic belt of late Precambrian age in Northeast Greenland. In: Geology of the Arctic I (G.O. Raasch, ed.), pp. 155–159. Toronto 1961

  2. Haller, J.: Tectonic map of East Greenland 1∶500,000. Medd. Groenland 171, 286 (1970)

    Google Scholar 

  3. Haller, J.: Geology of the East Greenland Caledonides, 413 p. New York: Interscience 1971

    Google Scholar 

  4. Henriksen, N., Higgins, A.K.: East Greenland Caledonian fold belt. In: Geology of Greenland (A. Escher, W.S. Watt, eds.). Copenhagen: 1976

  5. Adams, P.J., Cowie, J.W.: A geological reconnaissance of the region around the inner part of Danmarks Fjord, Northeast Greenland. Medd. Groenland 111, 1–24 (1953)

    Google Scholar 

  6. Jepsen, H.F.: The Precambrian, Eocambrian and early Paleozoic stratigraphy of the Jørgen Brønlund Fjord Area, Peary Land, North Greenland. Grønlands Geol. Undersøgelse Bull. 96, 1–42 (1971)

    Google Scholar 

  7. Fränkl, E.: Vorläufige Mitteilung über die Geologie von Kronprins Christians Land (NE-Grönland, zwischen 80°–81° N und 19°–23° W). Medd. Groenland 116, 85 (1954)

    Google Scholar 

  8. Bridgwater, D.: A compilation of K/Ar age determinations on rocks from Greenland carried out in 1969. Grønlands Geol. Undersøgelse Rapp. 28, 47–55 (1970)

    Google Scholar 

  9. Henriksen, N., Jepsen, H.F.: K/Ar age determinations on Dolerites from Southern Peary Land. Grønlands Geol. Undersøgelse Rapp. 28, 55–58 (1970)

    Google Scholar 

  10. Haller, J.: Die Strukturelemente Ostgrönlands zwischen 74° und 78° N. Medd. Groenland 154, 27 (1956)

    Google Scholar 

  11. Wyllie, P.J.: A geological reconnaissance through South Germania Land, Northeast Greenland. Lat. 77° N, Long. 18 1/2° W to 22° W. Medd. Groenland 157, 66 (1957)

    Google Scholar 

  12. Tilton, G.R., Patterson, C., Brown, H.S., Inghram, M.G., Hayden, R.J., Hess, D.H., Larsen, E.S.: Isotopic composition and distribution of lead, uranium and thorium in a Precambrian granite. Bull. Geol. Soc. Am. 66, 1131–1148 (1955)

    Google Scholar 

  13. Tatsumoto, M.: Isotopic composition of lead in volcanic rocks from Hawaii, Iwo Jima, and Japan. J. Geophys. Res. 71, 1721–1733 (1966)

    Google Scholar 

  14. Wetherill, G.W., Bickford, M.E.: Primary and metamorphic Rb-Sr chronology in Central Colorado. J. Geophys. Res. 70, 4669–4686 (1965)

    Google Scholar 

  15. Steiger, R.H.: Dating of orogenic phases in the Central Alps by K-Ar ages of hornblende. J. Geophys. Res. 69, 5407–5421 (1964)

    Google Scholar 

  16. Signer, P., McDowell, F.W.: On-line Ar extraction system for rapid high-precision routine analysis. Eclogae Geol. Helv. 63, 311–321 (1970)

    Google Scholar 

  17. Kalsbeek, F., Zwart, H.J.: Zircons from some gneisses and granites in the Central and Eastern Pyrenees. Geol. Mijnbouw 46, 457–466 (1967)

    Google Scholar 

  18. Köppel, V., Grünenfelder, M.: A study of inherited and newly formed zircons from paragneisses and granitised sediments of the Strona-Ceneri-Zone (Southern Alps). Schweiz. Mineral. Petrol. Mitt. 51, 385–409 (1971)

    Google Scholar 

  19. Köppel, V.: Isotopic U-Pb ages of monazites and zircons from the crust-mantle transition and adjacent units of the Ivrea and Ceneri Zones (Southern Alps, Italy). Contrib. Mineral. Petrol. 43, 55–70 (1974)

    Google Scholar 

  20. Wetherill, G.W.: An interpretation of the Rhodesia and Witwatersrand age patterns. Geochim. Cosmochim. Acta 9, 290–292 (1956)

    Google Scholar 

  21. Tilton, G.R.: Volume diffusion as a mechanism for discordant lead ages. J. Geophys. Res. 65, 2933–2945 (1960)

    Google Scholar 

  22. Wasserburg, G.J.: Diffusion processes in lead-uranium systems. J. Geophys. Res. 68, 4823–4846 (1963)

    Google Scholar 

  23. Tilton, G.R., Grünenfelder, M.: Sphene: uranium lead ages. Science 150, 1805–1808 (1968)

    Google Scholar 

  24. York, D.: Least-squares fitting of a straight line. Can. J. Phys. 44, 1079–1086 (1966)

    Google Scholar 

  25. Hart, S.R.: The petrology and isotopic-mineral age relations of a contact zone in the Front Range, Colorado. J. Geol. 72, 493–525 (1964)

    Google Scholar 

  26. Jäger, E., Niggli, E., Wenk, E.: Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen. Beitr. Geol. Karte Schweiz N.F. 134, 1–67 (1967)

    Google Scholar 

  27. Hanson, G.N., Gast, P.W.: Kinetic studies in contact metamorphic zones. Geochim. Cosmochim. Acta 31, 1119–1153 (1967)

    Google Scholar 

  28. Grant, J.A.: Geology of the Vogt-Hobbs Area, District of Nipissing. Ontario Department of Mines, Geological Report 22, 1–24 (1964a)

    Google Scholar 

  29. Grant, J.A.: Rubidium-strontium isochron study of the Grenville Front near Lake Timagami, Ontario. Science 146, 1049–1053 (1964b)

    Google Scholar 

  30. Jäger, E.: Rb-Sr systems in different degrees of metamorphism. Eclogae Geol. Helv. 63, 163–172 (1970)

    Google Scholar 

  31. Winkler, H.G.F.: Die Genese der metamorphen Gesteine, 2. Aufl. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  32. Kulp, G.L.: Present status of geochronometry. Isotopics, U.S. At. Energy Comm. (Oak Ridge) 1, 1–7 (1963)

    Google Scholar 

  33. Armstrong, R.L., Jäger, E., Eberhardt, P.: A comparison of K-Ar and Rb-Sr ages on Alpine biotites. Earth Planet. Sci. Letters 1, 13–19 (1966)

    Google Scholar 

  34. Hayatsu, A., Carmichael, C.M.: K-Ar isochron method and initial argon ratios. Earth Planet. Sci. Let. 8, 71–76 (1970)

    Google Scholar 

  35. Harper, C.T.: Graphical solutions to the problem of radiogenic 40Ar loss from metamorphic minerals. Eclogae Geol. Helv. 63, 119–140 (1970)

    Google Scholar 

  36. Niggli, E., Niggli, C.R.: Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen (Stilpnomelan, Alkali-Amphibol, Chloritoid, Staurolith, Disthen, Sillimanit). Eclogae Geol. Helv. 58, 335–368 (1965)

    Google Scholar 

  37. Gerling, E.K., Koltsova, T.V., Petrov, B.V., Zulfikarova, Z.K.: On the suitability of amphiboles for age determination by the K-Ar method. Geochem. Intern. 2, 148–154 (1965)

    Google Scholar 

  38. Doe, B.R., Hart, S.R.: The effect of contact metamorphism on lead in potassium feldspars near the Eldora stock, Colorado. J. Geophys. Res. 68, 3521–3530 (1963)

    Google Scholar 

  39. Tatsumoto, M., Knight, R.J., Allègre, C.J.: Time differences in the formation of meteorites as determined from the ratio of Lead-207 to Lead-206. Science 180, 1279–1283 (1973)

    Google Scholar 

  40. Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M.: Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971)

    Google Scholar 

  41. Houtermans, F.G.: Determination of the age of the earth from the isotopic composition of meteoritic lead. Nuovo Cimento 10, 1623–1633 (1953)

    Google Scholar 

  42. Kanasewich, E.R., Farquhar, R.M.: Lead ratios from the Cobalt-Noranda area, Canada. Can. J. Earth Sci. 2, 361–384 (1965)

    Google Scholar 

  43. Stacey, J.S., Kramers, J.D.: Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Letters 26, 207–221 (1975)

    Google Scholar 

  44. Doe, B.R.: Cenozoic volcanism in the Southern Rocky Mountains. Quart. J. Colorado School of Mines 63, 149–174 (1968)

    Google Scholar 

  45. Moorbath, S., Welke, H., Gale, N.H.: The significance of lead isotope studies in ancient, highgrade metamorphic basement complexes, as exemplified by the Lewisian rocks of Northwest Scotland. Earth Planet. Sci. Letters 6, 245–256 (1969)

    Google Scholar 

  46. Haller, J., Kulp, J.L.: Absolute age determinations in East Greenland. Medd. Groenland 171, 77 (1962)

    Google Scholar 

  47. Armstrong, R.L., McDowall, W.G.: Proposed refinement of Phanerozoic Time scale. Unpublished document (1974)

  48. Derksen, U., Funk, H., Vollmer, R.: Mess- und Auswertungsprogramm für ein rechnergekoppeltes Thermionen-Massenspektrometer (Abstract). Fortschr. Mineral. 50, Beiheft 3, 29 (1973)

    Google Scholar 

  49. Grauert, B., Gebauer, D., Signer, P.: Aufbau, Charakteristika und Messergebnisse eines automatisierten Massenspektrometers (Abstract). Fortschr. Mineral. 50, Beiheft 3, 29 (1973)

    Google Scholar 

  50. Nunes, P.D., Steiger, R.H.: A U-Pb Zircon, and Rb-Sr and U-Th-Pb Whole-Rock Study of a polymetamorphic terrane in the central Alps, Switzerland. Contrib. Mineral. Petrol. 47, 255–280 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dipl. geol. Emil Zimmermann died on August 5, 1970, while on a collecting trip in central Switzerland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiger, R.H., Harnik-Šoptrajanova, G., Zimmermann, E. et al. Isotopic age and metamorphic history of the banded gneiss at Danmarkshavn, East Greenland. Contrib. Mineral. Petrol. 57, 1–24 (1976). https://doi.org/10.1007/BF00392849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392849

Keywords

Navigation