Skip to main content
Log in

Pilot-scale verification of a computer-based simulation for the centrifugal recovery of biological particles

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The development of a model for simulating the recoveries by pilot-scale disc-stack centrifugation of whole yeast cells, yeast cell debris and protein precipitates prepared by ammonium sulphate salting-out is presented. The model is based on the grade efficiency concept and incorporates the effects of hindered settling at high biomass concentrations and the breakage of shear-sensitive material within the centrifuge feed-zone to give an accurate prediction of solid/liquid separation. The simulations have been proven by comparison with data from pilot-scale verification trials. The trials have highlighted where improvements to the models were required to increase their accuracy. The value of verification trials in proving the validity of models is commented upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C v :

volume concentration of solids in suspension (−)

D :

dilution factor (−)

d :

particle diameter (μm)

d c :

critical particle diameter (μm)

E :

enzyme activity (U mL−1)

E T :

centrifuge mass yield (−)

g :

acceleration due to gravity (9.81 ms−2)

k :

constant (−)

k B :

breakage constant (−)

n :

constant (−)

Q :

volumetric flowrate (m3 s−1)

R :

total protein concentration (mg mL−1)

R o :

outer disc radius (m)

R i :

inner disc radius (m)

(T(d) :

grade efficiency (−)

V :

volume (L)

Z :

number of discs (−)

Δϱ :

solid-liquid density difference (Kg m−3)

Δt :

change in time (s)

ΔF :

representation for particle size distributions (−)

θ :

disc conical half-angle (rads)

μ :

suspension dynamic viscosity (N s m−2)

ρ L :

liquid phase density (Kg m−3)

ρ A :

aggregate phase density (Kg m−3)

Σ:

area of a simple gravity settling tank of equivalent sedimentation characteristics to that of the centrifuge (m2)

σ :

particle geometric factor (−)

ω :

centrifuge angular velocity (rad s−1)

R :

Total protein

E :

Enzyme

PPT :

Precipitant

s :

Sheared

f :

Feed

sup :

Supernatant

sed :

Sediment

ppt :

Precipitate phase

sol :

Soluble phase

References

  1. Ambler, C.M.: The evaluation of centrifuge performance. Chem. Eng. Prog., March, (1952) 150–158

  2. Bartsch, M.J.: Mathematische Formeln, VEB Fachbuchverlag, Leipzig, (1977)

    Google Scholar 

  3. Baron, G.; Wajc, S.: Fluidised settling in centrifuges, Synopsis 686, Chemical Engineering Technology, 4, (1979) 333–338

    Google Scholar 

  4. Bell, D.J.; Dunnill, P.: Shear disruption of soya protein precipitate particles and the effect of ageing in a stirred tank, Biotechnology and Bioengineering, 24, (1982) 1271–1285

    Google Scholar 

  5. Bell, D.J.; Dunnill, P.: The influence of precipitation reactor configuration on the centrifugal recovery of isoelectric soya protein precipitate, Biotechnology and Bioengineering, 24, (1982b) 2319–2336

    Google Scholar 

  6. Bell, D.J.; Hoare, M.; Dunnill, P.: The formation of protein precipitates and their centrifugal recovery, Advances in Biochemical Engineering/Biotechnology, 26, (1983) Ed. A. Fiechter. Berlin: Springer Verlag, Berlin, 1–72

    Google Scholar 

  7. Bell, D.J.; Heywood-Waddington, D.; Hoare, M.; Dunnill, P.: The density of protein precipitates and its effect on centrifugal sedimentation. Biotechnology and Bioengineering, 24, (1982) 127–141

    Google Scholar 

  8. Bell, D.J.; Brunner, K.-H.: A method for the evaluation of floc breakup in centrifuges, Filtration and Separation, 20 (4), (1983) 274–301

    Google Scholar 

  9. Bergmeyer, H.O.: Methods of Enzymic Analysis, Verlag Chemie, Weinheim (1979)

    Google Scholar 

  10. Bohman, H.: Hydrodynamics of the liquid in the disc-stack of a centrifugal separator, Paper F3, 1st European Conference on Mixing and Centrifugal Separation, September, Cranfield (1974)

  11. Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Analytical Biochemistry, 72, (1976) 248–254

    PubMed  Google Scholar 

  12. Brunner, K.-H.; Molerus, O.: Theoretical and experimental investigation of separation efficiency of disc centrifuges, German Chemical Engineering, 2, (1979) 228–233

    Google Scholar 

  13. Brunning, P.: Scale-up Probleme bei Tellerseparatoren, Technische Dokumentation, Westfalia Separator AG, Oelde, Germany (1987)

    Google Scholar 

  14. Bulmer, M.; Clarkson, A.I.; Titchener-Hooker, N.J.: Pilot-scale verification of bioprocess models, paper in preparation, (1955)

  15. Clarkson, A.I.; Lefevre, P.; Titchener-Hooker, N.J.: A study of process interactions between cell disruption and debris clarification stages in the recovery of yeast intracellular proteins, Biotechnol. Prog., 3, (1993) 462–467

    Google Scholar 

  16. Clarkson, A.I.; Bulmer, M.; Siddiqi, S.; Titchener-Hooker, N.J.: Pilot-scale verification of bioprocess models, Computers Chem. Eng., 18, (1994) S651-S655

    Google Scholar 

  17. Clarkson, A.I.; Bulmer, M.; Titchener-Hooker, N.J.: Pilot-scale verification and a computer-based simulation for fractional protein precipitation, Paper accepted Bioproc. Eng. (1995)

  18. Datar, R.; Rosen, C.J.: Centrifugal separation in the recovery of intracellular protein from E. coli, The Chemical Engineering Journal, 34, (1987) B49-B56

    Google Scholar 

  19. Dehghani, M.; Bulmer, M.; Thornhill, N.F.; Gregory, M.E.; Ison, A.: Assays for fermentation processes with measurement variability analysis, Paper accepted Bioproc. Eng (1995)

  20. Gupta, S.K.: Scale-up procedures for disc-stack centrifuges, Chemical Engineering Journal, 22, (1981) 43–49

    Google Scholar 

  21. Hetherington, P.J.; Follows, M.; Dunnill, P.; Lilly, M.D.: Release of protein from Baker's yeast (Saccharomyces cerevisiae) by disruption in an industrial homogeniser, Trans. Instn. Chem. Engrs., 49, (1971) 142–148

    Google Scholar 

  22. Hemfort, H.: Separatoren, Technische Dokumentation der Westfalia Separator AG, Oelde, Germany (1979)

  23. Hemmingson, A.: Applied Biochemistry and Bioengineering, 2, (1979) 157–183

    Google Scholar 

  24. Higgins, J.J.; Lewis, D.J.; Daly, W.H.; Mosqueira, F.G.; Dunnill, P.; Lilly, M.D.: Investigation f the unit operations involved in the continuous flow isolation of β-galactosidase, Biotechnology and Bioengineering, 20, (1978) 159–182

    Google Scholar 

  25. Mannweiler, K.: The recovery of biological particles in high-speed continuous centrifuges with special reference to feed-zone bream-up effects, Ph.D. Thesis, University of London (1990)

  26. Mannweiler, K.; Hoare, M.: The scale-down of an industrial disc stack centrifuge, Bioprocess Engineering, 8, (1992) 19–25

    Google Scholar 

  27. Mannweiler, K.; Titchener-Hooker, N.J.; Hoare, M.: Biochemical Engineering improvements in the centrifugal recovery of biological particles, I. Chem. E. Symposium — Advances in Biochemical Engineering, (1989) 105–117

  28. Mosqueira, F.G.; Higgins, J.J.; Dunnill, P.; Lilly, M.D.: Characteristics of mechanically disrupted Baker's yeast in relation to its separation in industrial centrifuges, Biotechnology and Bioengineering, 23, (1981) 335–343

    Google Scholar 

  29. Pantelides, C.C.: Speed-up — recent advances in process simulation, Computers and Chemical Engineering, 12 (7), (1988) 745–755

    Google Scholar 

  30. Rehm, H.: Industrielle Mikrobiologie, Berlin, Heidelberg, New York, Tokyo, Springer-Verlag (1980)

    Google Scholar 

  31. Richardson, J.F.; Zaki, W.N.: Sedimentation and Fluidisation: Part I, Trans. Instn. Chem. Engrs. 32, (1954) 35–53

    Google Scholar 

  32. Rumpus, J.: Ph.D. Thesis, University of London (1995)

  33. Sargent, R.W.H.; Westerberg, A.W.: SPEED-UP in chemical engineering design, Trans. Instn. Chem. Engrs., 42, (1964) T190-T197

    Google Scholar 

  34. Siddiqi, S.F.; Titchener-Hooker, N.J.; Ayazi Shamlou, P.: The operating conditions on the generation of cell debris in high-pressure homogenisation of Baker's yeast, Biotech. Bioeng., (submitted) (1995)

  35. Stokes, G.G.: On the effect of the internal fraction on the motion pendulum, Trans. Cam. Phil. Soc. 9, (1951) 8

    Google Scholar 

  36. Titchener-Hooker, N.J.; Hoare, M.; Dunnill, P.: New approaches to the more efficient purification of proteins and enzymes, Biochemical Engineering, 6, Annals New York Acad. Sci., 589 (1991) 157–171

    Google Scholar 

  37. Willus, C.A.; Fitch, B.: Centrifuges: flow patterns in a disc centrifuge, Chemical Engineering Progress, 69 (9), (1973) 93–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

UCL is the Biotechnology and Biological Sciences Research Council's Interdisciplinary Research Centre for Biochemical Engineering and the Council's support to the participating UCL departments is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkson, A.I., Bulmer, M. & Titchener-Hooker, N.J. Pilot-scale verification of a computer-based simulation for the centrifugal recovery of biological particles. Bioprocess Engineering 14, 81–89 (1996). https://doi.org/10.1007/BF00387961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387961

Keywords

Navigation