Skip to main content
Log in

Emission of microorganisms from biofilters

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Experiments are reported on the discharge of microbial germs by biofilter systems used for the treatment of waste gases containing volatile organic compounds. The systems investigated concern six full-scale filter installations located in the Netherlands in several branches of industry, as well as a laboratory-scale installation used for modelling the discharge process. It is concluded that the number of microbial germs (mainly bacteria and to a much smaller extent moulds) in the outlet gas of the different full scale biofilters varies between 103 and 104 m−3, a number which is only slightly higher than the number encountered in open air and of the same order of magnitude encountered in indoor air. It is furthermore concluded that the concentration of microorganisms of a highly contaminated inlet gas is considerably reduced by the filtration process. On the basis of the experiments performed in the laboratory-scale filter bed, it is shown that the effect of the gas velocity on the discharge process results from two distinctive mechanisms: capture and emission. A theoretical model is presented describing the rate processes of both mechanisms. The model presented and the experimentally determined data agree rather well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a s m−1 :

specific area of the packing material

C m−3 :

microbial gas phase concentration

C e , C i m−3 :

microbial concentration in the exit and inlet gas resp.

CFU:

colony-forming-units

d c , d m m:

diameter of collecting and captured particle resp.

D m:

diameter of the filter bed

E :

single particle target efficiency

H m:

bed height

k c s−1 :

first order capture rate constant per unit of bedvolume

k e m−3 :

emission rate constant per unit of bedvolume

n :

number of observations

r c , r e m−3 s−1 :

capture and emission rate per unit of bed-volume

Re =:

\(\frac{\varepsilon }{{(1 - \varepsilon )}}\frac{{\varrho u{\text{ }}d_c }}{\mu }\) Reynolds number

S t =:

\(\frac{{\varrho _m u{\text{ }}dm^2 }}{{9\mu {\text{ }}d_c }}\) Stokes number

u m s−1 :

superficial gas velocity

u m m s−1 :

superficial gas velocity at which C e = C i

ɛ:

void fraction of the filter bed

ϱ kg m−3 :

density of the gas phase

ϱ m kg m−3 :

density of captured particle

μ Pa s:

dynamic gas phase viscosity

η =:

\(1 - \frac{{C_e }}{{C_i }}\) filter bed efficiency

References

  1. Klages, S.; Hatami, M.: Vergleichender Mikrobiologische Untersuchungen an Biofiltern zur Abgasreinigung. Diplomarbeit, Universität Stuttgart, März 1987

  2. Kingston, D.: Selective media in air sampling, a review. J. Appl. Bact. 34 (1971) 221

    Google Scholar 

  3. Luckiesh, M.; Taylor, A. H.: Heating, piping, air-conditioning 19 (1947) 113

    Google Scholar 

  4. Bovallius, A.; Bucht, B.: Three year investigation of the natural airborne bacterial flora at four localities in Sweden. Appl. and Env. Micr. 35 (1978) 847

    Google Scholar 

  5. Elliot, L. F.; Mc Calla, T. M.; Deshazer, J. A.: Bacteria in the air of housed swine units. Appl. and Env. Micr. 32 (1976) 270

    Google Scholar 

  6. Clark, C. S.; Rylander, R.; Larsson, L.: Levels of gram-negative bacteria, Aspergillus fumigatus, dust and endotoxin at compost plants. Appl. and Env. Micr. 45 (1983) 1501

    Google Scholar 

  7. Adams, A. P.; Spendlove, J. C.: Coliform aerosols emitted by sewage treatment plants. Science 169 (1970) 1218

    Google Scholar 

  8. Ladd, F. C.: Airborne bacteria from liquid waste treatment units. M.S. Thesis, Oklahoma State University, 1966

  9. Verstraete, W.: Mededelingen faculteit landbouwwetenschappen Gent 39 no. 1 (1976) 259

    Google Scholar 

  10. Gaden, E. L.; Humphrey, A. E.: Fibrous filters for air sterilizations. Ind. and Eng. Chem. 48 (1956) 2173

    Google Scholar 

  11. May, K. R.; Marper, G. J.: The efficiency of various liquid impinger samples in bacterial aerosols. Brit. J. Industr. Med. 14 (1957) 287

    PubMed  Google Scholar 

  12. Gutfinger, C.; Tardos, G. I.: Theoretical and experimental investigation on granular bed dust filters. Atm. Env. 13 (1979) 853

    Google Scholar 

  13. Lembke, L. L.; Kniseley, R. N.: Airborne microorganisms in a municipal solid waste recovery system. Can. J. Micr. 31 (1985) 198

    Google Scholar 

  14. Lembke, L. L.; Kniseley, R. N.; Van Nostrand, R. C.; Hale, M. D.: Precision of the all-glass impinger and the Andersen microbial impactor for air sampling in solid-waste handling facilities. Appl. and Env. Micr. 42 (1981) 222

    Google Scholar 

  15. Sorber, C. A.; Bausum, H. T.; Schaub, S. A.: A study of bacterial aerosols at a waste water irrigation site. Journal W.P.C.F. 48 (1976) 2367

    Google Scholar 

  16. Jones, W.; Morring, K.; Morey, P.; Sorenson, W.: Evaluation of the Andersen viable impactor for single stage sampling. Am. Ind. Hyg. Ass. J. 46 (1985) 294

    Google Scholar 

  17. Gillespie, V. V.; Clark, C. S.; Bjornson, H. S.; Samuels, S. J.; Holland, J. W.: A comparison of two-stage and six-stage Andersen impactors for viable aerosols. Am. Ind. Hyg. Assoc. J. 42 (1981) 858

    Google Scholar 

  18. Placencia, A. M.; Peller, J. T.; Oxborrow, G. S.; Danielson, J. W.: Comparison of bacterial recovery by Reuter centrifugal air sampler and slit-to-agar sampler. Appl. and Env. Micr. 44 (1982) 512

    Google Scholar 

  19. Friedlander, S. K.: Particle diffusion in low-speed flows. J. Colloid Interface Sci. 23 (1967) 157

    PubMed  Google Scholar 

  20. Tardos, G.; Abuaf, N.; Gutfinger, C.: Diffusional filtration of dust in a fluidized bed filter. Atm. Env. 10 (1976) 389

    Google Scholar 

  21. Gutfinger, C.; Tardos, G. I.: Theoretical and experimental investigation on granular bed dust filters. Atm. Env. 13 (1979) 853

    Google Scholar 

  22. Paretsky, L.; Theodore, L.; Pfeffer, R.; Squires, A. M.: Panel bed filters for simultaneous removal of fly ash and sulphur dioxyde. J. Air Pollut. Control Ass. 21 (1971) 204

    Google Scholar 

  23. Gutfinger, C.; Tardos, G.; Abuaf, N.: Analytical and experimental studies on granular bed filtration. Proc. Symp. Transfer Util. Particulate Control Technol. 3 (1978) 243

    Google Scholar 

  24. Doganoglu, Y.; Jog, V.; Thambimuthu, K. V.; Clift, R.: Removal of fine particulates from gases in fluidised beds. Trans. I. Chem. E. 56 (1978) 239

    Google Scholar 

  25. Thambimuthu, K. V.: Gas filtration in fixed and fluidized beds. Ph.D. Thesis, Cambridge 1980

  26. Ottengraf, S. P. P.; Van den Oever, A. H. C.: Kinetics of organic compound removal from waste gases with a biological filter. Biotechn. and Bioeng. 25 (1983) 3089

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottengraf, S.P.P., Konings, J.H.G. Emission of microorganisms from biofilters. Bioprocess Engineering 7, 89–96 (1991). https://doi.org/10.1007/BF00383584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383584

Keywords

Navigation