Skip to main content
Log in

Nutrient dynamics within amazonian forests

II. Fine root growth, nutrient availability and leaf litter decomposition

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber JD, Melillo JM (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Can J Bot 58:416–421

    Google Scholar 

  • Anderson JM, Proctor J, Vallack HW (1983) Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park, Sarawak III. Decomposition processes and nutrient losses from leaf litter. J Ecol 71:503–527

    Google Scholar 

  • Aranguren J, Escalante G, Herrera R (1982a) Nitrogen cycle of tropical perennial crops under shade trees. I. Coffee. In: Nitrogen cycling in Ecosystems of Latin America and the Caribbean (Robertson PG, Herrera R, Rosswall T, eds) Plant and Soil 67:247–258

  • Aranguren J, Escalante G, Herrera R (1982b) Ibid. II. Cacao. In: Nitrogen Cycling in Ecosystems of Latin American and the Caribbean (Robertson PG, Herrera R, Rosswall T, eds) Plant and Soil 67:259–269

  • Attiwill PM (1968) The loss of elements from decomposing leaf litter. Ecology 49:142–145

    Google Scholar 

  • Berg B, Staaf H (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Terrestrial nitrogen cycles (Clark FE, Rosswall T, eds) Ecol Bull (Stockholm) 33:163–178

  • Bernhardt-Reversat F (1972) Decomposition de la litiere de feuilles en foret ombrophile de basse Cote-d'Ivoire. Oecol Plant 7:279–300

    Google Scholar 

  • Blood R, Tate C, Nicora M (1981) Factors affecting the analysis of environmental samples using inductively coupled plasma. Annual Report to National Science Foundation Okefenokee Swamp Project. Inst of Ecol Univ Georgia. Athens, Georgia

    Google Scholar 

  • Bocock KL (1964) Changes in the amount of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to activities of soil fauna. J Ecol 52:273–284

    Google Scholar 

  • Bongers F, Engelen D, Klinge H (1985) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the Bana woodland. Vegetatio 63:13–34

    Google Scholar 

  • Breimer R (1982) Some observations on soils in relation to forest type in San Carlos de Rio Negro. UNESCO Report, Montevideo

  • Cuenca G (1981) Papel de las raíces micorrícicas del café (Coffea arabiga) en la descomposición de la hojarasca. Tesis M.Sc. Instituto Venezolano de Investigaciones Científicas. Caracas

  • Cuevas E, Medina E (1983) Root production and organic matter decomposition in a Tierra Firme forest of the upper Rio Negro basin. In: Wurzelökologie und Ihre Nutzanwendung. Int Symp Gumpenstein 1982, pp 653–666

  • Cuevas E, Medina E (1986) Nutrient dynamics in amazonian forest ecosystems. 1. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia (Berl.) 68:466–472

    Google Scholar 

  • Day FP Jr (1982) Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology 63:670–678

    Google Scholar 

  • Dubroeck D, Sánchez V (1981) Caracteristicas ambientales y edáficas del área muestra San Carlos de Rio Negro-Solano MARN, Dirección General de Información e Investigación del Ambiente, Dirección de Suelos, Vegetación y Fauna. Caracas, Venezuel

  • Edwards PJ (1977) Studies of mineral cycling in a montane rain forest in New Guinea. II. The production and disappearance of ter. J Ecol 65:971–992

    Google Scholar 

  • Fittkau EJ, Junk W, Klinge H, Sioli H (1975) Substrate and vegetation in the Amazon. In: Tuxen R (ed) Vegetation und Substrat. Berichte der Internationalen Vereinigung für Vegetationskunde. J Cramer Vaduz. Liechtenstein, pp 73–90

    Google Scholar 

  • Foelster H, de las Salas G (1976) Litter fall and mineralization in three tropical evergreen forest stands, Colombia. Acta Cient Ven 21:196–202

    Google Scholar 

  • Furch K, Klinge H (1978) Towards a regional characterization of the biogeochemistry of alkali and alkali-earth metals in northern South America. Acta Cient Ven 29:434–444

    Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhyzal roots of Pinus radiata. New Zealand J For Sci 5:33–41

    Google Scholar 

  • Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook forest, New Hampshire. Ecol Mon 43:173–191

    Google Scholar 

  • Herrera R (1977) Soil and terrain conditions in the San Carlos project (Venezuela MAB-1) study site correlation with vegetation types. Trans Int MAB-IUFRO Workshop Trop Rain For Ecosystem Res, Hamburg-Reinbeck, pp 132–188

  • Herrera R (1979) Nutrient Distribution and Cycling in an Amazon Caatinga Forest on Spodosols in Southern Venezuela. PhD dissertation. University of Reading, England

  • Herrera R, Jordan CF, Klinge H, Medina E (1978) Amazon ecosystems. Their structure and functioning with particular emphasis on nutrients. Interciencia 3:223–232

    Google Scholar 

  • Herrera R, Jordan CF, Medina E, Klinge H (1981) How human activities disturb the nutrient cycles of a tropical rain forest in Amazonia. Ambio 10:109–114

    Google Scholar 

  • Irmler U, Furch K (1980) Weight, energy and nutrient changes during decomposition of leaves in the emersion phase of Central amazonian inundation forests. Pedobiologia 20:118–130

    Google Scholar 

  • Jackson ML (1964) Análisis químico de suelos. Ed Omega Barcelona

  • Jenny J, Gesser P, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432

    Google Scholar 

  • Jordan CF (1982) The nutrient balance of an amazonian rain forest. Ecology 61:14–18

    Google Scholar 

  • Jordan CF, Escalante G (1980) Root productivity in an Amazonian rain forest. Ecology 61:14–18

    Google Scholar 

  • Jordan CF, Heuveldop J (1981) The water budget of an amazonian rain forest. Acta Amazonica 11:87–92

    Google Scholar 

  • Jordan CF, Todd RL, Escalante G (1979) Nitrogen conservation in a tropical rain forest. Oecologia (Berl) 39:123–128

    Google Scholar 

  • Kiffer E, Puig H, Kilbertus G (1981) Biodegradation des feuilles d'Eperua falcata Aubl. en forêt tropicale humide (Guyane Française). Rev Ecol Biol Sol 18:135–157

    Google Scholar 

  • Klinge H (1977) Preliminary data on nutrient release from decomposing leaf litter in a neotropical rain forest. Amazoniana 6:193–202

    Google Scholar 

  • Klinge H, Herrera R (1983). Phytomass structure of the Amazon Caatinga ecosystem in Southern Venezuela 1. Tall Amazon Caatinga. Vegetatio 53:65–84

    Google Scholar 

  • Klinge H, Medina E (1979). Rio Negro caatingas and campinas, Amazonas states of Venezuela and Brazil. In: Specht RL (ed) Heathland and Related Shrublands. Ecosystems of the World 9A. Elsevier Scient Publ Co. Amsterdam, pp 483–487

    Google Scholar 

  • Lousier JD, Parkinson D (1978) Chemical element dynamics in decomposing leaf litter. Can J Bot 56:2795–2812

    Google Scholar 

  • McLaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490

    Google Scholar 

  • Medina E, Herrera R, Jordan CF, Klinge H (1977) The Amazon project of the Venezuelan Institute for Scientific Research. Nature and Resources UNESCO 13(3):4–6

    Google Scholar 

  • Medina E, Sobrado M, Herrera R (1978) Significance of leaf orientation for leaf temperature in an Amazon sclerophyll vegetation. J Rad Environ Biophys 15:131–140

    Google Scholar 

  • Melillo JM, Aber Jd, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Google Scholar 

  • Mengel K, Kirkby EA (1982) Principles of Plant Nutrition. International Potash Institute. Bern, Switzerland

    Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390

    Google Scholar 

  • Nemeth A, Herrera R (1982) Earthworm populations in a Venezuelan tropical rain forest. Pedobiologia 23:437–443

    Google Scholar 

  • Olson J (1963) Energy storage and balance of producers and decomposers in ecological systems. Ecology 44:322–351

    Google Scholar 

  • Persson H (1980) Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden. Oikos 34:77–87

    Google Scholar 

  • Rains DW (1976) Mineral metabolism. In: Plant Biochemistry (Bonner J, Varner JE, eds) 3rd Ed. Academic Press, New York, pp 561–592

    Google Scholar 

  • Russell EW (1973) Soil conditions and plant growth. 10th Ed. Longman Group Ltd, London

    Google Scholar 

  • Sanford RL Jr (1987) Apogeotropic roots in an Amazonian rain forest. Science 235:1062–1064

    Google Scholar 

  • Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. The Bot Rev 43:449–528

    Google Scholar 

  • Sobrado M, Medina E (1980) General morphology, anatomical structure and nutrient content of sclerophyllous leaves of the “Bana” vegetation of Amazonas. Oecolgia (Berl) 45:341–345

    Google Scholar 

  • St John TV (1983) Response of tree roots to decomposing organic matter in two lowland Amazonian rain forests. Can J For Res 13:346–349

    Google Scholar 

  • St John TV, Uhl C (1983) Mycorrhyzae in the rain forest at San Carlos de Río Negro. Acta Cient Ven 39:233–237

    Google Scholar 

  • Stark N, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–437

    Google Scholar 

  • Stark N, Spratt M (1977) Root biomass and nutrient storage in rain forest oxisols near San Carlos de Rio Negro. Trop Ecol 18:1–9

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Univ of California Press, Berkeley

    Google Scholar 

  • Uhl C, Murphy PG (1981) Composition, structure, and regeneration of a Tierra Firme forest in the Amazon basin of Venezuela. Trop Ecol 22:219–237

    Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J AOAC 46:829–835

    Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Amer Nat 119:553–572

    Google Scholar 

  • Went F, Stark N (1968) Mycorrhiza. BioScience 18:1035–1038

    Google Scholar 

  • Wood TG (1974) Field investigations on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors. Pedobiologia 14:343–371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas, E., Medina, E. Nutrient dynamics within amazonian forests. Oecologia 76, 222–235 (1988). https://doi.org/10.1007/BF00379956

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379956

Key words

Navigation