Skip to main content
Log in

Rhyolites contaminated with metapelite and gabbro, Lipari, Aeolian Islands, Italy: products of lower crustal fusion or of assimilation plus fractional crystallization?

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Pleistocene lavas from Monte S. Angelo and Chiesa Vecchia volcanoes on Lipari contain two suites of inclusions. A metapelitic suite consists of gneisses and granulites with combinations of cordierite, garnet, corundum, hercynite, andalusite, sillimanite, orthopyroxene, ilmenite, magnetite, biotite, plagioclase, and quartz. A gabbroic suite has cumulus texture and contains plagioclase, orthopyroxene, clinopyroxene, and magnetite. All megacryst phases in the lavas appear to be derived from rock fragments, with the exception of euhedral strongly zoned calcic plagioclase, and none has grown by homogeneous nucleation from liquid represented by the groundmass, which is peraluminous rhyolite (>70 wt% SiO2, >6 wt% K2O). Ground-mass microcrysts were nearly all derived from disaggregated metapelites; overgrowths of alkali feldspar on plagioclase and of orthopyroxene on clinopyroxene, and quartz intergrown with alkali feldspar, are the only phases that grew from the rhyolitic liquid. Euhedral cordierite, hercynite, and plagioclase at the margins of some rock fragments grew by reaction of metapelite with liquid.

For grains in contact within metapelite inclusions, geothermometers and geobarometers yield estimates of equilibration conditions in the range of 800±100° C and 5±1 kbar. Compositions of phases in the same thin section, but not in the same inclusion, yield broadly erratic P and T estimates indicating disequilibrium among metapelite inclusions. Pyroxene thermometry in the gabbro suite indicates a crystallization temperature of 1020±50° C and a lack of subsequent thermal equilibration with the rhyolitic liquid.

The metapelite suite may partly be restite, but much is xenolithic, derived from a vertical interval of perhaps several kilometers, and may have undergone a much earlier episode of melting. The gabbro fragments are accidental xenoliths incorporated as the magma rose. Contaminants (metapelite and gabbro) account for 50 vol.% of the lavas, and cause them to be classified as “high-K andesite” according to whole-rock major element analysis.

The rhyolitic liquid may have originated by partial fusion of metapelites in the lower crust, or by fractional crystallization of mafic mantle-derived magma combined with assimilation of metapelite; the bulk of the evidence favors assimilation-fractional crystallization. Miocene and younger metapelite-contaminated rhyolites also occur in Tuscany, SE Spain, E Morocco, and NW Tunisia, and are associated in each region with mafic silica-undersaturated lavas, implying crustal underplating around the western Mediterranean before, during, and after formation of the Tyrrhenian basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster T (1985) Fe-rich cordierites from acid volcanic rocks, an optical and x-ray single-crystal structure study. Contrib Mineral Petrol 91:180–187

    Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112

    Google Scholar 

  • Barberi F, Innocenti F, Ferrara G, Keller J, Villari L (1974) Evolution of Eolian arc volcanism (southern Tyrrhenian Sea). Earth Planet Sci Lett 21:269–276

    Google Scholar 

  • Beccaluva L, Gabbianelli G, Lucchini F, Rossi PL, Savalli C (1985) Petrology and K/Ar ages of volcanics dredged from the Eolian seamounts: implications for geodynamic evolution of the southern Tyrrhenian basin. Earth Planet Sci Lett 74:187–208

    Google Scholar 

  • Bellon H, Brousse R (1977) Le magmatisme perimediterranean occidental. Essai de synthese. Bull Soc Geol France 19:469–480

    Google Scholar 

  • Bellon H, Bordet P, Montenat C (1983) Chronologie du magmatisme neogene des Cordilleres Betiques (Espagne meridionale). Bull Soc Géol France 25:205–217

    Google Scholar 

  • Bergeat A (1910) Der Cordieritandesit von Lipari, seine andalusitführenden Einschlüsse und die genetischen Beziehungen zwischen dem Andalusit, Sillimanit, Biotit, Cordierit, Orthoklas und Spinell in den letzteren. Neues Jahrb Mineral 30:575–627

    Google Scholar 

  • van Bergen MJ, Barton M (1984) Complex interaction of aluminous metasedimentary xenoliths and siliceous magma; an example from Mt. Amiata (Central Italy). Contrib Mineral Petrol 86:374–385

    Google Scholar 

  • Bhattacharya A (1986) Some geobarometers involving cordierite in the FeO-Al2O3-SiO2(±H2O) system: refinements, thermodynamic calibration, and applicability in granulite facies rocks. Contrib Mineral Petrol 94:387–394

    Google Scholar 

  • Bishop FC (1980) The distribution of Fe2+ and Mg between coexisting ilmenite and pyroxene with applications to geothermometry. Am J Sci 280:46–77

    Google Scholar 

  • Bohlen SR, Wall VJ, Boettcher AL (1983) Experimental investigation and application of garnet granulite equilibria. Contrib Mineral Petrol 83:52–61

    Google Scholar 

  • Clemens JD (1984) Water contents of silicic to intermediate magmas. Lithos 17:273–287

    Google Scholar 

  • Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contrib Mineral Petrol 88:354–371

    Google Scholar 

  • Cortese M, Frazzetta G, La Volpe L (1986) Volcanic history of Lipari (Aeolian Islands, Italy) during the last 10000 years. J Volc Geotherm Res 27:117–133

    Google Scholar 

  • Crisci GM, De Rosa R, Lanzafame G, Mazzuoli R, Sheridan MF, Zuffa GG (1981) Monte Guardia sequence: a Late-Pleistocene eruptive cycle on Lipari (Italy). Bull Volcanol 44:241–255

    Google Scholar 

  • Cristofolini R, Ghisetti F, Scarpa R, Vezzani L (1985) Character of the stress field in the Calabrian Arc and Southern Appenines (Italy) as deduced by geological, seismological and volcanological information. Tectonophysics 117:39–58

    Google Scholar 

  • D'Amico C, Rottura A, Maccarrone E, Puglisi G (1984) Peraluminous granitic suite of Calabria-Peloritani Arc (Southern Italy). Rend Soc Ital Mineral Petrol 38:35–52

    Google Scholar 

  • De Paolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602

    Google Scholar 

  • Ellis DJ (1986) Garnet-liquid Fe2+-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. Am J Sci 286:765–791

    Google Scholar 

  • Esperanca S, Crisci GM, Mazzuoli R, Carlson RW (1986) Sr and Nd isotopic compositions of lavas from Lipari Island (Aeolian arc), Italy. Terra Cognita 6:200

    Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117

    Google Scholar 

  • Gasparini C, Iannaccone G, Scarpa R (1985) Fault-plane solutions and seismicity of the Italian peninsula. Tectonophysics 117:59–78

    Google Scholar 

  • Grant JA (1985) Phase equilibria in partial melting of pelitic rocks. In: Ash worth JR (ed) Migmatites. Blackie and Son Ltd, Glasgow, pp 86–144

    Google Scholar 

  • Grove TL, Kinzler RJ (1986) Petrogenesis of andesites. Ann Rev Earth Planet Sci 14:417–454

    Google Scholar 

  • Gunter AE, Skippen GB, Chao GY (1984) Cell dimensions, Mossbauer and infrared-absorption spectra of synthetic cordierite. Can Mineral 22:447–452

    Google Scholar 

  • Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Google Scholar 

  • Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300:697–701

    Google Scholar 

  • Hensen BJ, Green DH (1973) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III. Synthesis of experimental data and geological applications. Contrib Mineral Petrol 38:151–166

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminum silicate phase diagram. Am J Sci 271:97–131

    Google Scholar 

  • Honnorez J, Keller J (1968) Xenolithe in vulkanischen Gesteinen der Aolischen Inseln (Sizilien). Geol Rundsch 57:719–736

    Google Scholar 

  • Horvath F, Berckhemer H, Stegena L (1981) Models of Mediterranean back-arc basin formation. Philos Trans R Soc London A 300:383–402

    Google Scholar 

  • Johannes W (1984) Beginning of melting in the granite system Qz-Or-Ab-An-H2O. Contrib Mineral Petrol 86:264–273

    Google Scholar 

  • Keller J (1974) Petrology of some volcanic rock series of the Aeolian arc, southern Tyrrhenian Sea: calc-alkaline and shoshonitic associations. Contrib Mineral Petrol 46:29–47

    Google Scholar 

  • Keller J (1980) The island of Vulcano. Rend Soc Ital Mineral Petrol 36:369–414

    Google Scholar 

  • Klerkx J, Deutsch S, Hertogen J, De Winter J, Gijbels R, Pichler H (1974) Comments on “Evolution of Eolian arc volcanism (southern Tyrrhenian Sea)” by F. Barberi, G. Ferrara, F. Innocenti, J. Keller and L. Villari. Earth Planet Sci Lett 23:297–303

    Google Scholar 

  • Klerkx J, Deutsch S, Hertogen J, Gijbels R, Pichler H (1976) Strontium isotope and rare earth data relating to the petrogenesis of the Aeolian arc volcanism. In: Augustithis SS (ed) Proceedings International Congress on Thermal Waters, Geothermal Energy and Vulcanism of the Mediterranean Area, vol 3. Vulcanism. National Technical University, Athens, pp 76–96

    Google Scholar 

  • Kretz R (1982) Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochim Cosmochim Acta 46:411–421

    Google Scholar 

  • Lacroix A (1904) La montagne Pelee et ses eruptions. Masson et Cie, Paris

    Google Scholar 

  • Lee HY, Ganguly J (1986) Garnet-orthopyroxene equilibria: experimental determinations in the FMAS system and applications. Geol Soc Am 18:669–670

    Google Scholar 

  • LeMaitre RW (1981) GENMIX-a generalized petrological mixing program. Comput Geosci 7:229–247

    Google Scholar 

  • LeMaitre RW (1984) A proposal by the IUGS Subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Aust J Earth Sci 31:243–255

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Lindsley DH, Spencer KJ (1982) Fe-Ti oxide geothermometry: reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (Ilm). EOS Trans Am Geophys Union 63:471

    Google Scholar 

  • Luhr JF, Carmichael ISE, Varekaamp JC (1984) The 1982 eruptions of El Chichon Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Vole Geotherm Res 23:69–108

    Google Scholar 

  • Maccarrone E (1963) Aspetti geochimico-petrografici di alcuni esemplari di andesite granato-cordieritifero dell'Isola di Lipari. Period Mineral 32:277–302

    Google Scholar 

  • Maillet LA, Clarke DB (1985) Cordierite in the peraluminous granites of the Meguma Zone, Nova Scotia, Canada. Mineral Mag 49:695–702

    Google Scholar 

  • Martignole J, Sisi J-C (1981) Cordierite-garnet-H2O equilibrium: a geological thermometer, barometer and water fugacity indicator. Contrib Mineral Petrol 77:38–46

    Google Scholar 

  • Mauduit F (1976) Le magmatisme Néogène de la Tunisie septentrionale et ses implications geotectoniques. In: Augustithis SS (ed) Proceedings International Congress on Thermal Waters, Geothermal Energy and Vulcanism of the Mediterranean Area, vol 3. Vulcanism. National Technical University, Athens, pp 125–138

    Google Scholar 

  • Miller CF (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources? J Geology 93:673–689

    Google Scholar 

  • Miller CF (1986) Comment on “S-type granites and their probable absence in southwestern North America”. Geology 14:804–805

    Google Scholar 

  • Miyashiro A (1957) Cordierite-indialite relations. Am J Sci 255:43–62

    Google Scholar 

  • Montel J-M, Weber C, Pichavant M (1986) Biotite-sillimanite-spinel assemblages in high-grade metamorphic rocks: occurrences, chemographic analysis and thermobarometric interest. Bull Mineral 109:555–573

    Google Scholar 

  • Munksgaard NC (1984) High δ 18O and possible pre-eruptional Rb-Sr isochrons in cordierite-bearing Neogene volcanics from SE Spain. Contrib Mineral Petrol 87:351–358

    Google Scholar 

  • Munksgaard NC (1985) A non-magmatic origin for compositionally zoned euhedral garnets in silicic Neogene volcanics from SE Spain. Neues Jahrb Mineral Monatsh 2:73–82

    Google Scholar 

  • Newton RC, Haselton HT (1981) Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Springer, Berlin Heidelberg New York, pp 131–147

    Google Scholar 

  • Newton RC, Wood BJ (1979) Thermodynamics of water in cordierite and some petrologic consequences of Cordierite as a hydrous phase. Contrib Mineral Petrol 68:391–405

    Google Scholar 

  • Peccerillo A (1985) Roman comagmatic province (central Italy): evidence for subduction-related magma genesis. Geology 13:103–106

    Google Scholar 

  • Perchuk LL, Lavrent'eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, Berlin Heidelberg New York, pp 199–239

    Google Scholar 

  • Pichler H (1980) The island of Lipari. Rend Soc Ital Mineral Petrol 36:415–440

    Google Scholar 

  • Poli G, Frey FA, Ferrara G (1984) Geochemical characteristics of the south Tuscany (Italy) volcanic province: constraints on lava petrogenesis. Chem Geol 43:203–221

    Google Scholar 

  • Sakai C, Banno S, Toriumi M, Higashino T (1985) Growth history of garnet in pelitic schists of the Sanbagawa metamorphic terrain in central Shikoku. Lithos 18:81–95

    Google Scholar 

  • Schenk V (1984) Petrology of felsic granulites, metapelites, metabasics, ultramafics, and metacarbonates from southern Calabria (Italy); prograde metamorphism, uplift and cooling of a former lower crust. J Petrol 25:255–298

    Google Scholar 

  • Selli R (1985) Tectonic evolution of the Tyrrhenian Sea. In: Stanley DJ, Wezel F-C (eds) Geological evolution of the Mediterranean Basin. Springer, Berlin Heidelberg New York, pp 131–151

    Google Scholar 

  • Simkin T, Fiske RS (1983) Krakatau 1883: the volcanic eruption and its effects. Smithsonian Institution Press, Washington DC, p 464

    Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201

    Google Scholar 

  • Taylor HP Jr, Turi B (1976) High-18O igneous rocks from the Tuscan magmatic province, Italy. Contrib Mineral Petrol 55:33–54

    Google Scholar 

  • Thornton CP, Tuttle OF (1960) Chemistry of igneous rocks: 1. Differentiation index. Am J Sci 258:664–684

    Google Scholar 

  • Tracy RJ, Robinson P, Thompson AB (1976) Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. Am Mineral 61:762–775

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74:153

    Google Scholar 

  • Vielzeuf D (1983) The spinel and quartz associations in high grade xenoliths from Tallante (SE Spain) and their potential use in geothermometry and barometry. Contrib Mineral Petrol 82:301–311

    Google Scholar 

  • Wezel F-C (1985) Structural features and basin tectonics of the Tyrrhenian Sea. In: Stanley DJ, Wezel F-C (eds) Geological evolution of the Mediterranean Basin. Springer, Berlin Heidelberg New York, pp 153–194

    Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Google Scholar 

  • Whitford DJ, Jezek PA (1979) Origin of Late-Cenozoic lavas from the Banda arc, Indonesia: trace element and Sr isotope evidence. Contrib Mineral Petrol 68:141–150

    Google Scholar 

  • Wickham SM (1987) The segregation and emplacement of granitic magmas. J Geol Soc London 144:281–297

    Google Scholar 

  • Wyborn D, Chappell BW (1986) The petrogenetic significance of chemically related plutonic and volcanic rock units. Geol Magazine 123:619–628

    Google Scholar 

  • Wyborn D, Chappell BW, Johnson RM (1981) Three S-type volcanic suites from the Lachlan Fold Belt, southeast Australia. J Geophys Res 86:10335–10348

    Google Scholar 

  • Yardley BWD (1977) An empirical study of diffusion in garnet. Am Mineral 62:793–800

    Google Scholar 

  • Zeck HP (1970) An erupted migmatite from Cerro de Hoyazo, SE Spain. Contrib Mineral Petrol 26:225–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, D.S. Rhyolites contaminated with metapelite and gabbro, Lipari, Aeolian Islands, Italy: products of lower crustal fusion or of assimilation plus fractional crystallization?. Contr. Mineral. and Petrol. 97, 460–472 (1987). https://doi.org/10.1007/BF00375324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375324

Keywords

Navigation