Skip to main content
Log in

Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows. In addition, textural and mineralogical features indicate that the Gorgona komatiites may have crystallized from superheated liquids. Komatiitic rocks have MgO contents which range from 24 to 11 wt.% and plot on well-defined olivine (Fo90) control lines. Calculations show that potential evolved liquids (MgO<11 wt%) will be SiO2-poor. Komatiites, in this case, cannot be regarded as parental to the associated tholeiitic basalt sequence.

On the basis of REE concentrations and Sr, Nd isotopic compositions, the associated basalts are found to be of two types. One type (K-tholeiite) is characterized by noticeably fractionated REE patterns and relatively primitive isotopic compositions similar to those of the komatiites. K-tholeiites, together with komatiites, are regarded as comprising a distinctive komatiitic suite. REE patterns within this suite show progressive depletion in the LREE from K-tholeiites to komatiites, and represent increasingly higher degrees of melting of the same mantle source region. The other type (T-tholeiite), representative of the bulk of the exposed basalt sequence, has flat REE patterns and relatively evolved isotopic compositions. This tholeiitic suite is clearly genetically unrelated to the komatiitic suite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken BG (1983) Compositional variation in clinopyroxene from komatiites, Gorgona Island, Colombia. Terra Cognita 3:148

    Google Scholar 

  • Arndt NT (1976) Melting relations of ultramafic lavas (komatiites) at one atmosphere and high pressure. Carnegie Inst Wash Yearb 75:555–561

    Google Scholar 

  • Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, Northeast Ontario. J Petrol 18:319–369

    Google Scholar 

  • Arndt NT, Nisbet EG (1982) What is a komatiite? In: Arndt NT, Nisbet EG (eds) Komtatiites. George Allen and Unwin, London, pp 19–27

    Google Scholar 

  • Arndt NT, Fleet ME (1979) Stable and metastable pyroxene crystallization in layered komatiite flows. Am Mineral 64:856–864

    Google Scholar 

  • Arth JG, Arndt NT, Naldrett AJ (1977) Genesis of Archaean komatiites from Munro Township, Ontario. Geology 5:590–594

    Google Scholar 

  • Bence AE, Papike JJ, Lindsley DH (1971) Crystallization histories of clinopyroxenes in two porphyritic rocks from Oceanus Procellarum. Proc Lunar Sci Conf 2nd:559–574

    Google Scholar 

  • Bickle MJ (1982) The magnesium contents of komatiitic liquids. In: Arndt NT, Nisbet EG (eds) Komatiites. George Allen and Unwin, London, pp 479–494

    Google Scholar 

  • Bickle MJ, Martin A, Nisbet EG (1975) Basaltic and peridotitic komatiites and stromatolites above a basal unconformity in the Belingwe greenstone belt, Rhodesia. Earth Planet Sci Lett 27:155–162

    Google Scholar 

  • Cameron WE, Nisbet EG, Dietrich VJ (1979) Boninites, komatiites and ophiolitic basalts. Nature 280:550–553

    Google Scholar 

  • Campbell IH, Arndt NT (1982) Pyroxene accumulation in spinifex textured rocks. Geol Mag 119:605–616

    Google Scholar 

  • Carslisle D (1963) Pillow breccias and their aquagene tuffs, Quadra Island, British Columbia. J Geol 71:48–71

    Google Scholar 

  • Clarke DB (1970) Tertiary basalts of Baffin Bay: possible primary magma from the mantle. Contr Mineral Petrol 25:203–224

    Google Scholar 

  • Dietrich VJ, Gansser A, Sommerauer J, Cameron WE (1981) Paleogene komatiites from Gorgona Island, East Pacific — a primary magma for ocean floor basalts? Geochem J 15:141–161

    Google Scholar 

  • Donaldson CH (1976) An experimental investigation of olivine morphology. Contrib Mineral Petrol 57:187–213

    Google Scholar 

  • Donaldson CH, Usselman TM, Williams RJ, Lofgren GE (1975) Experimental modeling of the cooling history of Apollo 12 olivine basalts. Proc Lunar Sci Conf 6th:843–869

    Google Scholar 

  • Echeverría LM (1980) Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: field relations and geochemistry. Contrib Mineral Petrol 73:253–266

    Google Scholar 

  • Echeverría LM, Hofmann A The relationship of komatiites and basalts on Gorgona Island, Colombia, gnand a comparison with Reykjanes Ridge picrites. Geology (in press)

  • Elthon D (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature 278:514–518

    Google Scholar 

  • Fleet ME, MacRae ND (1975) A spinifex rock from Munro Township, Ontario. Can J Earth Sci 12:928–939

    Google Scholar 

  • Gansser A (1950) Geological and petrological notes on Gorgona Island in relation to North-Western S. America. Schweiz Mineral Petrol Mitt 30:219–237

    Google Scholar 

  • Gansser A, Dietrich VJ, Cameron WE (1979) Paleogene komatiites from Gorgona Island. Nature 278:545–546

    Google Scholar 

  • Grove TL, Raudsepp M (1978) Effects of kinetics on the crystallization of quartz normative basalt 15597: an experimental study. Proc Lunar Sci Conf 9th:585–599

    Google Scholar 

  • Hart SR, Brooks C (1974) Clinopyroxene-matrix partitioning of K, Rb, Cs, Sr and Ba. Geochim Acta 38:1799–1806

    Google Scholar 

  • Jahn B-M, Bernard-Griffiths J, Charlot R, Cornichet J, Vidal F (1980) Nd and Sr isotopic compositions and REE abundances of Cretaceous MORB (Holes 417D and 418A, Legs 51, 52 and 53). Earth Planet Sci Lett 48:171–184

    Google Scholar 

  • Jenner GA, (1981) Geochemistry of high-Mg andesites from Cape Vogel, Papua New Guinea. Chem Geol 33:307–332

    Google Scholar 

  • Kay RW, Hubbard NJ (1978) Trace elements in ocean ridge basalts. Earth Planet Sci Lett 38:95–116

    Google Scholar 

  • Langmuir CH, Bender JF, Bence AE, Hanson GN, Taylor SR (1977) Petrogenesis of basalts from the Famous area: MidAtlantic Ridge. Earth Planet Sci Lett 36:133–156

    Google Scholar 

  • Mysen BO, Kushiro I (1976) Compositional variation of coexisting phases with degree of melting of peridotite under upper mantle conditions. Carnegie Inst Wash Yearb 75:546–555

    Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carboaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757

    Google Scholar 

  • Nesbitt RW, Jahn B-M, Purvis AC (1982) Komatiites: an early Precambrian phenomenon. J Volcanol 14:31–45

    Google Scholar 

  • Nicholls IA (1974) A direct fusion method of preparing silicate rock glasses for energy-dispersive electron microprobe analysis. Chem Geol 14:151–157

    Google Scholar 

  • O'Hara MJ (1965) Primary magmas and the origins of basalts. Scott J Geol 1:19–40

    Google Scholar 

  • O'Hara MJ (1968) Are ocean floor basalts primary magma? Nature 220:683–686

    Google Scholar 

  • O'Nions RK, Clarke DB (1972) Comparative trace element geochemistry of Tertiary basalts form Baffin Bay. Earth Planet Sci Lett 15:436–446

    Google Scholar 

  • O'Nions RK, Pankhurst RJ (1976) Sr isotope and rare element geochemistry of DSDP Leg 37 basalts. Earth Planet Sci Lett 31:255–261

    Google Scholar 

  • Pyke DR, Naldrett AJ, Eckstrand AR (1973) Archaean ultramafic flows in Munro Township, Ontario. Geol Soc Am Bull 84:955–978

    Google Scholar 

  • Richard P, Shimizu N, Allègre CJ (1976) 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278

    Google Scholar 

  • Schilling J-G (1971) Sea-floor evolution: rare-earth evidence. Phil Trans Roy Soc Lond 268:663–706

    Google Scholar 

  • Schilling J-G (1975) Rare-earth variations across “normal segments” of the Reykjanes Ridge, 60°–53°N, Mid-Atlantic Ridge, 29°S, and East Pacific Rise, 2–19°S, and evidence on the composition of the underlying low-velocity layer. J Geophys Res 80:1459–1473

    Google Scholar 

  • Schilling J-G, Kingsley RH, Devine JD (1982) Galapagos Hot Spot — spreading center system. 1 — Spatial petrological and geochemical variations (83°W–101°W). J Geophys Res 87:5593–5610

    Google Scholar 

  • Schilling J-G, Bonatti E (1975) East Pacific Ridge (2°S–19°S) versus Nazca intraplate volcanism: rare earth evidence. Earth Planet Sci Lett 25:93–102

    Google Scholar 

  • Sun S-S, Nesbitt RW (1978) Petrogenesis of Archaean ultrabasic and basic volcanics: Evidence from rare earth elements. Contrib Mineral Petrol 65:301–325

    Google Scholar 

  • Shimizu N (1974) An isotope dilution technique for analysis of the rare earth elements. Carnegie Inst Wash Yearb 73:941–943

    Google Scholar 

  • White WM, Patchett J: Hf-Nd-Sr isotopes and incompatible element abundances in island arcs, and implications for magmas origins and crust-mantle evolution. Earth Planet Sci Lett (inpress)

  • Whitford DJ, Arndt NT (1978) Rare earth element abundances in a thick, layered komatiite lava flow from Ontario, Canada, Earth Planet Sci Lett 41:138–196

    Google Scholar 

  • Zindler A, Hart SR, Frey FA, Jakobsson SP (1979) Nd and Sr isotope ratios and rare earth element abundances in Reykjanes Peninsula basalts: evidence for mantle heterogeneity beneath Iceland. Earth Planet Sci Lett 45:249–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitken, B.G., Echeverría, L.M. Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia. Contr. Mineral. and Petrol. 86, 94–105 (1984). https://doi.org/10.1007/BF00373714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373714

Keywords

Navigation