Skip to main content
Log in

Isolation of region-specific probes from pig Chromosome 6 by coincidence cloning

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Coincidence cloning is a technique that permits the isolation of sequences common to two independent sources of complex DNA, and this method has been used to isolate a set of probes from a region of porcine Chromosome (Chr) 6 containing the loci for glucosephosphate isomerase (GPI) and the skeletal muscle calcium release channel (CRC). Porcine DNA was specifically PCR-amplified from a pigxhamster hybrid cell line containing the centromere region (p1.2–q1.2) of pig Chr 6 and other pig chromosome fragments by use of a porcine SINE specific primer with an EcoRI site in the 5′-end. Flow-sorted Chr 6 preparations were amplified with the same SINE primer, but with a SalI site in the 5′-end. The products were digested with EcoRI and SalI respectively, combined, denatured, and reannealed. The heteroduplex molecules, containing both an EcoRI and a SalI cohensive end, were selected by cloning in SalI/EcoRI-digested pUC13. Approximately 40% of the primary clones contained a single SalI/EcoRI-insert, indicating that they are coincidence clones. The average insert size was 1.4 kb. Fluorescence in situ hybridization of a pool of 34 coincidence clones to pig chromosomes showed a preferential labeling of the centromere region and of the q2.5–q2.7 region of pig Chr 6. Nineteen coincidence clones were hybridized to SINE-PCR products from flow-sorted pig Chr 6 and to pigxrodent hybrid cell lines. Eighteen clones gave positive signals correlated with the GPI/CRC content of the source DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andresen, E., Jensen, P. (1977). Close linkage estabished between the HAL, locus for halothane sensitivity and PHI (phosphohexose isomerase) locus in pigs of the Danish Landrace breed. Nordisk Vet. Med. 29, 502–504.

    Google Scholar 

  • Aslanidis, C., de Jong, P.J. (1991). Coincidence cloning of Alu PCR products. Proc. Natl. Acad. Sci. USA 88, 6765–6769.

    Google Scholar 

  • Bernard, L.E., Brooks-Wilson, A.R., Wood, S. (1991). Isolation of DNA fragments from a human chromosomal subregion by Alu PCR differential hybridization. Genomics 9, 241–246.

    Google Scholar 

  • Bosma, A.A., Prins, J.B., de Haan, N.A., den Bieman, M., van Zutphen, L.F.M. (1988). Chromosome mapping in the pig by using somatic cell hybrids. Proc. 8th Eur. Coll. Cyt. Dom. Anim., 99–105.

  • Boyle, A.L., Ballard, S.G., Ward, D.C. (1990). Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 87, 7757–7761.

    Google Scholar 

  • Brookes, A.J., Porteous, D.J. (1991). Coincident sequence cloning. Nucleic Acids Res. 19, 2609–2613.

    Google Scholar 

  • Brookes, A.J., Porteous, D.J. (1992). Coincident sequence cloning: a new approach to genome analysis. Trends Biotech. 10, 40–44.

    Google Scholar 

  • Caspersson, T., Zech, L., Johansson, C., Modest, E.J. (1970). Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30, 215–227.

    Google Scholar 

  • Christensen, K., Kaufmann, U., Avery, B. (1985). Chromosome mapping in domestic pigs (Sus scrofa): MPI and NP located to chromosome 7. Hereditas 102, 231–235.

    Google Scholar 

  • Church, G.M., Gilbert, W. (1984). Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Google Scholar 

  • Cole, C.G., Goodfellow, P.N., Bobrow, M., Bentley, D.R. (1991). Generation of novel sequence tagged sites (STSs) from discrete chromosomal regions using Alu-PCR. Genomics 10, 816–826.

    Google Scholar 

  • Davies, W., Harbitz, I., Fries, R., Stranzinger, G., Hauge, J.G. (1988). Porcine malignant hyperthermia carrier detection and chromosomal assignment using a linked probe. Anim. Genet. 19, 203–212.

    Google Scholar 

  • Dolf, G., Stranzinger, G. (1986). Pig gene mapping: assignment of the genes for MPI and NP to the chromosome no. 7. Genet. Sel. Evol. 18, 375–384.

    Google Scholar 

  • Echard, G., Gellin, J., Gillois, M. (1984). Localisation des genes MPI, PKM2, NP sur le chromosome 3 du pore (Sus scrofa L.) et analyse cytogene-tique d'une lignee de hamster chinois issue de la DON (wg3h). Genet. Sel. Evól. 16, 261–270.

    Google Scholar 

  • Feinberg, A.P., Vogelstein, B. (1984). Addendum: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267.

    Google Scholar 

  • Frengen, E., Thomsen, P., Kristensen, T., Kran, S., Miller, R., Davies, W. (1991). Porcine SINEs: characterization and use in species-specific amplification. Genomics 10, 949–956.

    Google Scholar 

  • Fujii, J., Otsu, K., Zorzato, F., De Leon, S., Khanna, V.K., Weiler, J.E., O'Brien, P.J., MacLennan, D.H. (1991). Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451.

    Google Scholar 

  • Gefter, M.L., Margulies, D.H., Scharff, M.D. (1977). A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somat. Cell Genet. 3, 231–236.

    Google Scholar 

  • Guzzetta, V., Montes de Oca-Luna, R., Lupski, J.R., Patel, P.I. (1991). Isolation of region-specific and polymorphic markers from chromosome 17 by restricted Alu polymerase chain reaction. Genomics 9, 31–36.

    Google Scholar 

  • Harbitz, I., Chowdhary, B., Thomsen, P.D., Davies, W., Kaufmann, U., Kran, S., Gustavsson, I., Christensen, K., Hauge, J.G. (1990). Assignment of the porcine calcium release channel gene, a candidate for the malignant hyperthermia locus, to the 6p 11 → q 21 segment of chromosome 6. Genomics 8, 243–248.

    Google Scholar 

  • Harbitz, I., Kristensen, T., Bosnes, M., Kran, S., Davies, W. (1992). DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615 → Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian Landrace pigs. Anim. Genet. 23, 395–402.

    Google Scholar 

  • Higuchi, R. (1989). Using PCR to engineer DNA. In PCR Technology, H.E. Erlich ed. (New York: Stockton Press), pp. 61–70.

    Google Scholar 

  • Ledbetter, S.A., Nelson, D.L., Warren, S.T., Ledbetter, D.H. (1990). Rapid isolation of DNA probes within specific chromosome regions by interspersed repetitive sequence polymerase chain reaction. Genomics 6, 475–481.

    Google Scholar 

  • Leong, M.M.L., Lin, C.C., Ruth, R.F. (1983). The localization of genes for HPRT, G6PD, and alfa-GAL onto the X-chromosome of domestic pig (Sus scrofa domesticus). Can. J. Genet. Cytol. 25, 239–245.

    Google Scholar 

  • Lichter, P., Tang, C.C., Call, K., Hermanson, G., Evans, G.A., Housman, D., Ward, D.C. (1990). High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69.

    Google Scholar 

  • Lo, Y.-M.D., Mehal, W.Z., Fleming, K.A. (1990). Incorporation of biotinylated dUTP. In PCR Protocols: A Guide to Methods and Applications, M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. Whithe, eds. (San Diego: Academic Press), pp. 113–118.

    Google Scholar 

  • Miller, S.A., Dykes, D.D., Polesky, H.F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.

    Google Scholar 

  • Minkema, D., Eikelenboom, G., Eldik, P. (1976). Inheritance of MHS-susceptibility in pigs. Proc. 3rd Int. Conf. Prod. Dis. Farm Anim. 203–205.

  • Ryttman, H., Thebo, P., Gustavsson, I., Gahne, B., Juneja, R.K. (1986). Further data on chromosomal assignments of pig enzyme loci LDHA, LDHB, MPI, PEPB, PGMI, using somatic cell hybrids. Anim. Genet. 17, 323–333.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual, 2nd ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press). New York.

    Google Scholar 

  • Schmitz, A., Chaput, B., Fouchet, P., Guilly, M.N., Frelat, G., Vaiman, M. (1992a). Swine chromosomal DNA quantification by bivariate flow karyotyping and karyotype interpretation. Cytometry 13, 703–710.

    Google Scholar 

  • Schmitz, A., Chardon, P., Gainche, I., Chaput, B., Guilly, M.N., Frelat, G., Vaiman, M. (1992b). Pig standard bivariate flow karyotype and peak assignment for chromosomes X, Y, 3, and 7. Genomics 14, 357–362.

    Google Scholar 

  • Thomsen, P.D. (1987). Gene Mapping in Pigs. Use of Recombinant DNA Methods. Ph.D. thesis, The Royal Veterinary and Agricultural University, Copenhagen.

  • Thomsen, P.D., Bosma, A.A., Kaufmann, U., Harbitz, I. (1991a). The porcine PGD gene is preferentially lost from chromosome 6 in pigxrodent somatic cell hybrids. Hereditas 115, 63–67.

    Google Scholar 

  • Thomsen, P.D., Christensen, K., Davies, W. (1991b). Regional localization of repetitive DNA on the porcine Y chromosome. Cytogenet. Cell Genet. 58, 2097.

    Google Scholar 

  • Yerle, M., Schmitz, A., Milan, D., Chaput, B., Monteagudo, L., Vaiman, M., Frelat, G., Gellin, J. (1993). Accurate characterization of porcine bivariate flow karyotype by PCR and fluorescence in situ hybridization. Genomics 16, 97–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frengen, E., Thomsen, P.D., Schmitz, A. et al. Isolation of region-specific probes from pig Chromosome 6 by coincidence cloning. Mammalian Genome 5, 497–502 (1994). https://doi.org/10.1007/BF00369319

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369319

Keywords

Navigation