Skip to main content
Log in

Meiosis-dependent mRNA splicing of the fission yeast Schizosaccharomyces pombe mes1 + gene

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The mes1 + gene of the fission yeast Schizosaccharomyces pombe is essential for the second meiotic division. We have cloned a 1.1-kb HindIII fragment containing mes1 + by complementation from an S. pombe genomic library. Sequencing of the genomic and cDNA fragments indicates the existence of one small intron of 75 nucleotides, although both the 5′ (G/GTTAGT) and 3′ (CAG/T) intron-exon junctions deviate from the consensus sequences proposed for S. pombe. The putative translation product of the mature mes1 + mRNA is a 11-kDa protein of 101 amino acids which has no significant homology to any previously-reported proteins. Disruption of mes1 has no effect on cell growth but causes an arrest of meiosis before the second meiotic division. Northern-blot analysis revealed that mes1 + was preferentially transcribed under conditions of nitrogen starvation. When a h 90 homothallic strain was shifted to a nitrogen-deficient medium, a pre-mRNA accumulated and then was gradually processed to generate a mature mRNA. This splicing did not occur in either a heterothallic haploid strain or in a homothallic mei2 mutant strain which was defective in the initiation of meiosis. Expression of the first exon alone was not able to suppress the mes1 null allele. These results indicate that mes1 + is required for the completion of meiosis, that splicing is required for the function of the mes1 + gene, and that this splicing requires the function of the mei2 + product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beach D, Nurse P (1981) High-frequency transformation of the fission yeast Schizosaccharomyces pombe. Nature 290:140–142

    Google Scholar 

  • Beach D, Piper M, Nurse P (1982) Construction of a Schizosaccharomyces pombe gene bank in a yeast bacteria shuttle vector and its use to isolate genes by complementation. Mol Gen Genet 187:326–329

    Google Scholar 

  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24

    Google Scholar 

  • Bresch C, Müller G, Egel R (1968) Genes involved in meiosis and sporulation of a yeast. Mol Gen Genet 102:301–306

    Google Scholar 

  • Costello G, Rodgers L, Beach D (1986) Fission yeast enters the stationary-phase G0 state from either mitotic G1 or G2. Curr Genet 11:119–125

    Google Scholar 

  • Egel R (1989) Mating-type genes, meiosis, and sporulation. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, San Diego, pp 31–73

    Google Scholar 

  • Egel R, Egel-Mitani M (1974) Premeiotic DNA synthesis in fission yeast. Exp Cell Res 88:127–134

    Google Scholar 

  • Engebrecht J, Voelkel-Meiman K, Roeder GS (1991) Meiosis-specific RNA splicing in yeast. Cell 66:1257–1268

    Google Scholar 

  • Esposito RE, Klapholz S (1981) Meiosis and ascospore development. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 211–287

    Google Scholar 

  • Fowell RR (1969) Life cycles in yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 1. Academic Press, London, pp 303–383

    Google Scholar 

  • Green MR (1986) Pre-mRNA splicing. Annu Rev Genet 20:671–708

    Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics, vol. 1. Plenum Press, New York, pp 395–446

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Google Scholar 

  • Hereford L, Fahrener K, Woolford Jr J, Rosbash M, Kaback DB (1979) Isolation of yeast histone genes H2A and H2B. Cell 18:1261–1271

    Google Scholar 

  • Iino Y, Yamamoto M (1985a) Mutants of Schizosaccharomyces pombe which sporulate in the haploid state. Mol Gen Genet 198:416–421

    Google Scholar 

  • Iino Y, Yamamoto M (1985b) Negative control for the initiation of meiosis in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 82:2447–2451

    Google Scholar 

  • Jensen R, Sprague Jr GF, Herskowitz I (1983) Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus. Proc Natl Acad Sci USA 80:3035–3039

    Google Scholar 

  • Käufer NF, Simanis V, Nurse P (1985) Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature 318:78–80

    Google Scholar 

  • Laski FA, Rio DC, Rubin GM (1986) Tissue specificity of Drosophila P-element transposition is regulated at the level of mRNA splicing. Cell 44:7–19

    Google Scholar 

  • Maeda T, Mochizuki N, Yamamoto M (1990) Adenylyl cyclase is dispensable for vegetative cell growth in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 87:7814–7818

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • McLeod M, Beach D (1986) Homology between the ran1 + gene of fission yeast and protein kinases. EMBO J 5:3665–3671

    Google Scholar 

  • McLeod M, Stein M, Beach D (1987) The product of the mei3 + gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J 6:729–736

    Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast. Methods Enzymol 194:795–823

    Google Scholar 

  • Nandabalan K, Price L, Roeder GS (1993) Mutations in U1 snRNA bypass the requirement for a cell-type-specific RNA splicing factor. Cell 73:407–415

    Google Scholar 

  • Nurse P (1985) Mutants of the fission yeast Schizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol Gen Genet 198:497–502

    Google Scholar 

  • Okazaki K, Okazaki N, Kume K, Jinno S, Tanaka K, Okayama H (1990) High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res 18:6485–6489

    Google Scholar 

  • Rothstein R (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Google Scholar 

  • Russell P (1989) Gene cloning and expression in fission yeast. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, San Diego, pp 243–271

    Google Scholar 

  • Rymond BC, Rosbash M (1992) Yeast pre-mRNA splicing. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 143–192

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shimoda C, Uehira M (1985) Cloning of the Schizosaccharomyces pombe mei3 gene essential for the initiation of meiosis. Mol Gen Genet 201:353–356

    Google Scholar 

  • Shimoda C, Hirata A, Kishida M, Hashida T, Tanaka K (1985) Characterization of meiosis-deficient mutants by electron microscopy and mapping of four essential genes in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 200:252–257

    Google Scholar 

  • Shimoda C, Uehira M, Kishida M, Fujioka H, Iino Y, Watanabe Y, Yamamoto M (1987) Cloning and analysis of transcription of the mei2 gene responsible for initiation of meiosis in the fission yeast Schizosaccharomyces pombe. J Bacteriol 269:93–96

    Google Scholar 

  • Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205

    Google Scholar 

  • Watanabe Y, Iino Y, Furuhata H, Yamamoto M (1988) The S. pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J 7:761–767

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Yamamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishida, M., Nagai, T., Nakaseko, Y. et al. Meiosis-dependent mRNA splicing of the fission yeast Schizosaccharomyces pombe mes1 + gene. Curr Genet 25, 497–503 (1994). https://doi.org/10.1007/BF00351668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351668

Key words

Navigation