Skip to main content
Log in

A history of the axiomatic formulation of probability from Borel to Kolmogorov: Part I

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

This paper, the first of two, traces the origins of the modern axiomatic formulation of Probability Theory, which was first given in definitive form by Kolmogorov in 1933. Even before that time, however, a sequence of developments, initiated by a landmark paper of E. Borel, were giving rise to problems, theorems, and reformulations that increasingly related probability to measure theory and, in particular, clarified the key role of countable additivity in Probability Theory.

This paper describes the developments from Borel's work through F. Hausdorff's. The major accomplishments of the period were Borel's Zero-One Law (also known as the Borel-Cantelli Lemmas), his Strong Law of Large Numbers, and his Continued Fraction Theorem. What is new is a detailed analysis of Borel's original proofs, from which we try to account for the roots (psychological as well as mathematical) of the many flaws and inadequacies in Borel's reasoning. We also document the increasing realization of the link between the theories of measure and of probability in the period from G. Faber to F. Hausdorff. We indicate the misleading emphasis given to independence as a basic concept by Borel and his equally unfortunate association of a Heine-Borel lemma with countable additivity. Also original is the (possible) genesis we propose for each of the two examples chosen by Borel to exhibit his new theory; in each case we cite a now neglected precursor of Borel, one of them surely known to Borel, the other, probably so. The brief sketch of instances of the “Cantelli” lemma before Cantelli's publication is also original.

We describe the interesting polemic between F. Bernstein and Borel concerning the Continued Fraction Theorem, which serves as a rare instance of a contemporary criticism of Borel's reasoning. We also discuss Hausdorff's proof of Borel's Strong Law (which seems to be the first valid proof of the theorem along the lines sketched by Borel).

In retrospect, one may ask why problems of “geometric” (or “continuous”) probability did not give rise to the (Kolmogorov) view of probability as a form of measure, rather than the study of repeated independent trials, which was Borel's approach. This paper shows that questions of “geometric” probability were always the essential guide to the early development of the theory, despite the contrary viewpoint exhibited by Borel's preferred interpretation of his own results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Barone, J., 1974. An Historical Analysis of the Development of Axiomatic Probability Theory. Doctoral Dissertation. New York University.

  • Bernstein, F., 1911. “Über eine Anwendung der Mengenlehre auf ein aus der Theorie der säkularen Störungen herrührendes Problem,” Mathematische Annalen, 71, 417–439.

    Google Scholar 

  • Bohl, P., 1909. “Über ein in der Theorie der säkularen Störungen vorkommendes Problem,” Crelle's Journal, 135, 189–283.

    Google Scholar 

  • Borel, E., 1895. “Sur quelques points de la théorie des fonctions,” Annales de l'Éçole Normale, 3(12), 9–55.

    Google Scholar 

  • Borel, E., 1898. Leçons sur la Théorie des Fonctions, Paris.

  • Borel, E., 1903. “Contribution à l'analyse arithmétique du continu,” Journal de Mathématiques Pures et Appliquées, 9, 329–375.

    Google Scholar 

  • Borel, E., 1905. “Remarques sur certaines questions de probabilité,” Bulletin de la Société Mathématique de France, 33, 123–128.

    Google Scholar 

  • Borel, E., 1909. “Les probabilités dénombrables et leurs applications arithmétiques,” Rendiconti del Circolo Matematico di Palermo, 27, 247–271.

    Google Scholar 

  • Borel, E., 1909a. Eléments de la Théorie des Probabilités, Paris.

  • Borel, E., 1912. “Sur un problème de probabilités relatif aux fractions continues,” Mathematische Annalen, 72, 578–584.

    Google Scholar 

  • Borel, E., 1914. Leçons sur la Théorie des Fonctions. (2nd ed.), Paris.

  • Borel, E., 1926. Applications à l'Arithmétique et à la Théorie des Fonctions, Paris.

  • Broden, T., 1900, “Wahrscheinlichkeitsbestimmungen bei der gewöhnlichen Kettenbruchentwicklung reeler Zahlen,” Öfversigt af Kongl. Svenska Vetenskaps-Akademiens Förhandlingar, 2, 239–266.

    Google Scholar 

  • Cantelli, F., 1917a. “Sulla probabilità come limite della frequenza,” Accademia dei Lincei Roma. Classe di Scienze Fisiche, Mathematiche e Naturali. Rendiconti, 26 (5), 39–45.

    Google Scholar 

  • Cantelli, F., 1917b. “Su due applicazioni di un teorema di G. Boole alla statistica matematica,” Accademia dei Lincei Roma. Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti, 26 (5), 295–302.

    Google Scholar 

  • Caráthéodory, C., 1914. “Über das lineare Maß von Punktmengen — eine Verallgemeinerung des Längenbegriffs,” Nachrichten der Akademie der Wissenschaften zu Göttingen. II. Mathematisch-Physikalische Klasse, 4, 404–426.

    Google Scholar 

  • Dieudonné, J., 1975. “Introductory remarks on algebra, topology and analysis,” Historia Mathematica, 2, 537–548.

    Google Scholar 

  • Fréchet, M., 1906. “Sur quelques points du calcul fonctionnel.” Rendiconti del Circolo Matematico di Palermo, 22, 1–74.

    Google Scholar 

  • Fréchet, M., 1915. “Définition de l'Intégrale sur un ensemble abstrait,” Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, June 28th, 839–840.

  • Fréchet, M., 1930. “Sur la convergence en probabilité,” Metron, 8, 1–48.

    Google Scholar 

  • Hartman, S., 1948. “Sur deux notions de fonctions indépendantes,” Colloquium Mathematicum, 1, 19–22.

    Google Scholar 

  • Hausdorff, F., 1914. Grundzüge der Mengenlehre, Leipzig.

  • Hawkins, T., 1970. Lebesgue's Theory of Integration: Its Origins and Development, Madison, Wisconsin.

  • Hilbert, D., 1900. “Sur les problèmes futurs des mathématiques,“ Comptes Rendus du Deuxième Congrès International des Mathématiciens, Paris, 58–114.

  • Kac, M., 1959. Statistical Independence in Probability, Analysis and Number Theory, New York.

  • Lakatos, I., 1963–64. “Proofs and refutations,” British Journal for Philosophy of Science, 14, 1–25, 120–139, 221–243, 296–342.

    Google Scholar 

  • Lebesgue, H., 1906. Leçons sur les Séries Trigonométriques, Paris.

  • Natanson, I., 1961. Theory of Functions of a Real Variable, Volume I (revised ed.), New York.

  • Novikoff, A., & J. Barone, 1977. “The Borel Law of Normal Numbers, The Borel Zero-One Law, and the Work of Van Vleck,” Historia Mathematica, 4, 43–65.

    Google Scholar 

  • Poincaré, H., 1912. Calcul des Probabilités (2nd ed.), New York.

  • Radón, J., 1913. “Theorie und Anwendungen der absolut additiven Mengenfunktionen,” Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 122 (2), 1295–1438.

    Google Scholar 

  • Royden, H., 1965. Real Analysis, New York.

  • Schoenflies, A., 1913. Entwicklung der Mengenlehre und ihrer Anwendungen, Leipzig.

  • Sierpiński, W., 1918. “Sur une définition axiomatique des ensembles mesurables (L),” Bulletin de l'Académie des Sciences de Cracovie, July, 173–178.

  • Slutsky, E., 1925. “Über stochastisch Asymptoten und Grenzwerte,” Metron, 5, 3–89.

    Google Scholar 

  • Steinhaus, H., 1923. “Les probabilités dénombrables at leur rapport à la théorie de la mesure,” Polska Akademia Nauk. Fundamenta Mathematicae, 4, 286–310.

    Google Scholar 

  • van Vleck, E., 1908. “On non-measurable sets of points, with an examples,” Transactions of the American Mathematical Society, 9, 237–244.

    Google Scholar 

  • Vitali, G., 1905. Sul Problema della Misura dei Gruppi de Punti di una Retta, Bologna.

  • Wiman, A., 1900. “Ueber eine Wahrscheinlichkeitsaufgabe bei Kettenbruchentwicklungen,” Öfversigt af Kongl. Svenska Vetenskaps-Akademiens Förhandlingar, 7, 829–841.

    Google Scholar 

  • Wiman, A., 1901. “Bemerkungen über eine von Gyldén aufgeworfene Wahrscheinlichkeitsfrage, Acta Universitatis Lundensis, 1–19.

  • Wintner, A., 1941. The Analytical Foundations of Celestial Mechanics, Princeton, New Jersey.

  • Wintner, A., 1947. The Fourier Transform of Probability Distributions, Ann Arbor, Michigan.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Kline

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, J., Novikoff, A. A history of the axiomatic formulation of probability from Borel to Kolmogorov: Part I. Arch. Hist. Exact Sci. 18, 123–190 (1978). https://doi.org/10.1007/BF00348144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348144

Keywords

Navigation