Skip to main content
Log in

Cooling kinetics of garnet websterites from the Freychinède orogenic lherzolite massif, French Pyrenees

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Clinopyroxene and orthopyroxene megacrysts with lamellar intergrowths of pyroxenes and garnet rarely survive in pyroxenite layers from the exposed spinel-lherzolite massifs because of the emplacement history into the crust. Such features are remarkably preserved in some thick bands (up to 1 m) from the Freychinède ultramafic body (Ariège, French Pyrenees). These bands display a symmetrical zoning from the edges to the centre due to the concurrent decrease of orthopyroxene/clinopyroxene and spinel/garnet modal ratios. Textural and chemical data suggest that the present pyroxenite parageneses resulted from subsolidus recrystallization of magmatic assemblages composed of Al-rich orthopyroxene and clinopyroxene with minor spinel. These primary assemblages were changed by subsolidus recrystallization connected with an isobaric cooling at upper-mantle depth (45–50 km) from solidus temperature (1250°C) down to steady equilibrium temperature (950° C). The primary Al-rich ortho-and clinopyroxenes behaved differently on cooling. In a first stage, orthopyroxene exsolved concomitant Al-rich clinopyroxene and garnet, whereas clinopyroxene exsolved only Al-rich orthopyroxene. The garnet exsolution in clinopyroxene host is delayed to lower temperatures. This multistage process could account for the contrasting shapes of diffusion gradients adjacent to exsolved garnet, which tend to be flat in host-orthopyroxene and steep in host-clinopyroxene. An independent thermal modelling, together with available Al-diffusion data in clinopyroxene, allows us to define a fast magmatic cooling followed by a two-stage subsolidus cooling (35° C/year-6 from 1250° C to 1050° C and 9° C/year-6 to 900° C). This matches the contrasted exsolution sequences observed in the pyroxene megacrysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alibert C (1985) A Sr−Nd isotope and REE study of late Triassic dolerites from the Pyrenees (France) and the Messejana dyke (Spain and Portugal). Earth Planet Sci Lett 73:81–90

    Google Scholar 

  • Avé Lallemant HG (1967) Structural and petrofabric analysis of an “alpine type” peridotite. The lherzolite of French Pyrénées. Leidse Geol Meded 42:1–57

    Google Scholar 

  • Beeson MH, Jackson ED (1970) Origin of the garnet pyroxenite xenoliths at Salt Lake Crater, Oahu. Mineral Soc Am Spec Pap 3:95–112

    Google Scholar 

  • Bender JF, Hodges FN, Bence AE (1978) Petrogenesis of basalts from the Project Famous area: experimental study from 0 to 15 kbars. Earth Planet Sci Lett 41:277–302

    Google Scholar 

  • Bertrand P, Mercier JCC (1985) The mutual solubility of coexisting ortho-and clinopyroxene: toward an absolute geothermometer for the natural system? Earth Planet Sci Lett 76:109–122

    Google Scholar 

  • Bodinier JL, Guiraud M, Fabriès J, Dostal J, Dupuy C (1987) Petrogenesis of layered pyroxenites from the Lherz, Freychinède and Prades ultramafic bodies (Ariège, French Pyrenees). Geochim Cosmochim Acta 51:279–290

    Google Scholar 

  • Boyd FR (1970) Garnet peridotites and the system CaSiO3−MgSiO3−Al2O3. Mineral Soc Am Spec Pap 3:63–75

    Google Scholar 

  • Brady JB, MacCallister RM (1983) Diffusion data for clinopyroxenes from homogenization and self-diffusion experiments. Am Mineral 68:95–105

    Google Scholar 

  • Buseck PR, Nord GL Jr, Veblen R (1980) Subsolidus phenomena in pyroxenes. In: Prewitt CT (ed) Pyroxenes. Reviews in Mineralogy 7, Min Soc Am, Washington, DC, pp 117–211

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. ClarendonPress, London

    Google Scholar 

  • Champness PE, Lorimer GW (1973) Precipitation (exsolution) in an orthopyroxene. J Mater Sci 8:467–474

    Google Scholar 

  • Champness PE, Lorimer GW (1976) Exsolution in silicates. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer, New York Berlin Heidelberg, pp 174–204

    Google Scholar 

  • Conquéré F (1977) Les pyroxènolites à amphibole et les amphibolites associées aux lherzolites du gisement de Lherz (Ariège, France): un exemple du rôle de l'cau au cours de la cristallisation fractionnée des liquides issus de la fusion partielle de lherzolites. Contrib Mineral Petrol 33:32–61

    Google Scholar 

  • Conquéré F (1977) Pétrologie des pyroxénites litées dans les complexes ultramafiques de l'Ariège (France) et autres gisements de lherzolite à spinelle. Compositions minéralogiques et chimiques, évolution des conditions d'équilibre des pyroxénites. Bull Soc Fr Mineral Cristallogn 100:42–80

    Google Scholar 

  • Conquére F (1978) Pétrologie des complexes ultramafiques de lherzolites à spinelle de l'Ariège (France). Unpublished thesis University Paris VI

  • Conquéré F (1979) Comments on “The bearing of phase equilibria in single and complex systems...” by CT Herzberg. Contrib Mineral Petrol 70:219–222

    Google Scholar 

  • Conquéré F, Fabries J (1984) Chemical disequilibrium and its thermal significance in spinel-peridotites from the Lherz and Freychinède ultramafic bodies (Ariege, French Pyrenees). In: Kornprobst J (ed) Kimberlites II. The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 319–331

    Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe−Mg exchange equilibria. Contrib Mineral Petrol 71:13–22

    Google Scholar 

  • Frey FA (1980) The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: trace element evidence. Am J Sci 280-A:427–449

    Google Scholar 

  • Fujii T (1977) Pyroxene equilibria in spinel lherzolite. Carnegie Inst Washington Yearb 76:569–572

    Google Scholar 

  • Gasparik T (1984) Two-pyroxene thermobarometry with new experimental data in the system CaO−MgO−Al2O3−SiO2. Contrib Mineral Petrol 87:87–97

    Google Scholar 

  • Goiberg JM, Maluski H, Leyreloup AF (1986) Petrological and age relationship between emplacement of magmatic breccia, alkaline magmatism, and static metamorphism in the North Pyrenean Zone. Tectonophysics 129:275–290

    Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Google Scholar 

  • Grove TL (1982) Use of exsolution lamellae in lunar clinopyroxenes as cooling rate speedometers: an experimental calibration. Am Mineral 67:251–268

    Google Scholar 

  • Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300:697–701

    Google Scholar 

  • Harte B, Gurney JJ (1975) Evolution of clinopyroxene and garnet in an eclogite nodule from the Roberts Victor kimberlite pipe. Phys Chem Earth 9:367–388

    Google Scholar 

  • Haselton HT Jr, Westrum EF Jr (1980) Low-temperature heat capacities of synthetic pyrope, grossular and pyrope60 grossular40. Geochim Cosmochim Acta 44:701–709

    Google Scholar 

  • Herzberg CT (1978) The bearing of phase equilibria in simple and complex systems on the origin and evolution of some well-documented garnet-websterites. Contrib Mineral Petrol 66:375–382

    Google Scholar 

  • Irving AJ (1974) Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipe, Australia. J Petrol 15:1–40

    Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci 280-A:389–426

    Google Scholar 

  • Ito K, Kennedy GC (1968) Melting and phase relations in the plane tholeiite-lherzolite-nepheline basanite to 40 kilobars with geological implications. Contrib Mineral Petrol 19:177–211

    Google Scholar 

  • Jaoul O, Sautter V, Abel F (1990) Nuclear microanalysis: a powerful tool for measuring low atomic diffusivity. In: Ganguly J (ed) Atomic migration in minerals and fluids. APG 9. Springer, Berlin Heidelberg New York, p 200–222

    Google Scholar 

  • Kirby SH, Etheridge MA (1981) Exsolution of Ca-clinopyroxene from orthopyroxene aided by deformation. Phys Chem Minerals 7:105–109

    Google Scholar 

  • Kornprobst J (1970) Les péridotites et les pyroxénolites du massif ultrabasique des Beni Bouchera: une étude expérimentale entre 1100 et 1500° C, sous 15 à 30 kilobars de pression sèche. Contrib Mineral Petrol 29:290–309

    Google Scholar 

  • Kushiro I, Shimizu N, Nakamura Y, Akimoto S (1972) Compositions of coexisting liquid and solid phases formed upon melting of natural garnet and spinel lherzolites at high pressures: a preliminary report. Earth Planet Sci Lett 14:19–25

    Google Scholar 

  • Lacroix A (1917) Les pérodotites des Pyrénées et les autres roches intrusives non feldspathiques qui les accompagnent. C r Acad Sci Paris 165:381–387

    Google Scholar 

  • Lindsley DH, Anderson DJ (1983) A two-pyroxene thermometer. Proc 13th Lunar Planet Sci Conf, part 2. J Geophys Res 88 suppl:A887-A906

    Google Scholar 

  • Lucazeau F, Bayer R (1982) Evolution géothermique et géodynamique du Massif Central Français depuis l'Oligocène. Ann Geophys 38:405–429

    Google Scholar 

  • McCallister RH (1974) The exolution kinetics of a diopside solid solution having the composition 54.9 mole % Mg2Si2O6. Carnegie Inst Washington Yearb 73:392–396

    Google Scholar 

  • McLean D (1965) The science of metamorphism in metals. In: Pitcher WS, Flinn GW (eds) Controls of Metamorphism. Oliver and Boyd, Edinburgh, pp 103–118

    Google Scholar 

  • Mereier JCC, Nicolas A (1975) Textures and fabrics of uppermantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Google Scholar 

  • Montigny R, Azambre B, Rossy M, Thuizat R (1982) Etude K/Ar du magmatisme basique lié au Trias supérieur des Pyrénées. Conséquences méthodologiques et paléogéographiques. Bull Mineral 105:673–680

    Google Scholar 

  • Montigny R, Azambre B, Rossy M, Thuizat R (1986) K−Ar study of Cretaceous magmatism and metamorphism from the Pyrenees: age and length of rotation of the Iberian Peninsula. Tectonophysics 129:257–273

    Google Scholar 

  • Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen and carbon dioxide. J Petrol 16:549–593

    Google Scholar 

  • Nicolas A (1986) A melt extraction model based on structural studies in mantle peridotites. J Petrol 27:999–1022

    Google Scholar 

  • Nicolas A, Jackson M (1982) High temperature dikes in peridotites: origin by hydraulic fracturing. J Petrol 23:568–582

    Google Scholar 

  • Nicolas A, Poirier JP (1976) Cristalline plasticity and solid state flow in metamorphic rocks. Wiley-Interscience, New-York

    Google Scholar 

  • Nicolas A, Lucazeau F, Bayer R (1987) Peridotite xenoliths in Massif Central Basalts: textural and geophysical evidence for asthenospheric diapirism. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 563–574

    Google Scholar 

  • Nord GL Jr, McCallister RH (1979) Kinetics and mechanism of decomposition in Wo25En31Fs44 clinopyroxene (abstract). Geol Soc Am Abstracts with Programs 11:488

    Google Scholar 

  • O'Hara MJ, Richardson SM, Wilson G (1971) Garnet-peridotite stability and occurrence in crust and mantle. Contrib Mineral Petrol 32:48–68

    Google Scholar 

  • Perkins III D, Newton RC (1980) The compositions of coexisting pyroxenes and garnets in the system CaO−MgO−Al2O3−SiO2 at 900°–1100° C and high pressures. Contrib Mineral Petrol 75:291–300

    Google Scholar 

  • Putnis A, McConnell JDC (1980) Principles of Mineral Behaviour. Blackwell Scientific Publications Ltd, Oxford

    Google Scholar 

  • Robinson P (1980) The composition space of terrestrial pyroxenesinternal and external limits. In: Prewitt CT (ed) Pyroxenes. Reviews in Mineralogy 7, Min Soc Am, Washington, DC, pp 419–494

    Google Scholar 

  • Sautter V, Harte B (1988) Diffusion gradients in an eclogite xenolith from the Roberts Victor Kimberlite Pipe: I. Mechanism and evolution of garnet exsolution in Al2O3-rich clinopyroxene. J Petrol 29:1325–1352

    Google Scholar 

  • Sautter V, Jaoul O, Abel F (1988) Aluminium diffusion in diopside using the 27Al(p,g)28Si nuclear reaction: preliminary results. Earth Planet Sci Lett 89:109–114

    Google Scholar 

  • Sen G (1985) Experimental determination of pyroxene compositions in the system CaO−MgO−Al2O3−SiO2 at 900–1200° C and 10–15 kbar using PbO and H2O fluxes. Am Mineral 70:678–695

    Google Scholar 

  • Shervais JW, Wilshire HG, Schwarzman EC (1973) Garnet clinopyroxenite xenolith from Dish Hill, California. Earth Planet Sci Lett 19:120–130

    Google Scholar 

  • Tarantola A, Valette B (1982) Generalized non-linear inverse problems solved using least-squares criterion. Rev Geophys Space Phys 20:219–232

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics. Applications of Continuum Physics to Geological Problems. Wiley, New York

    Google Scholar 

  • Verschure RH, Hebeda EH, Boelrijk NA, Priem HNA, Avé Lallemant HG (1967) K−Ar age of hornblendite vein in the alpinetype ultramafic mass of the Étang de Lhers (Ariège, French Pyrenees). Leidse Geol Meded 42:59–60

    Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and comples systems. Contrib Mineral Petrol 62:129–139

    Google Scholar 

  • Wilkinson JFG (1976) Some subcalcic clinopyroxenes from Salt Lake Crater, Oahu and their petrogenetic significance. Contrib Mineral Petrol 58:181–201

    Google Scholar 

  • Yund RA, MacCallister RH (1970) Kinetics and mechanisms of exsolution. Chem Geol 6:5–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sautter, V., Fabriès, J. Cooling kinetics of garnet websterites from the Freychinède orogenic lherzolite massif, French Pyrenees. Contr. Mineral. and Petrol. 105, 533–549 (1990). https://doi.org/10.1007/BF00302493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00302493

Keywords

Navigation