Skip to main content
Log in

Approximate solution of a model of biological immune responses incorporating delay

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model of the humoral immune response, proposed by Dibrov, Livshits and Volkenstein (1977b), in which the antibody production by a constant target cell population depends on the antigenic stimulation at earlier times, is considered from an analytic standpoint. A method of approximation based on a consideration of the asymptotic limit of “large” delay in the antibody response is shown to be applicable, and to give results similar to those obtained numerically by the above authors. The relevance of this type of approximation to other systems exhibiting “outbreak” phenomena is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, H. T.: Delay systems in biological models: Approximation techniques. In: Nonlinear systems and applications, (V. Lakshmikantham, ed.) pp. 21–38. New York: Academic Press 1977

    Google Scholar 

  • Bell, G. I.: Mathematical model of clonal selection and antibody production. J. Theor. Biol. 29, 191–232 (1970)

    Google Scholar 

  • Bell, G. I.: Mathematical model of clonal selection and antibody production. II. J. Theor. Biol. 33, 339–378 (1971)

    Google Scholar 

  • Bell, G. I.: Predator-prey equations simulating an immune response. Math. Biosci. 16, 291–314 (1973)

    Google Scholar 

  • Cole, J. D.: Perturbation methods in applied mathematics. Waltham, MA: Blaisdell 1968

    Google Scholar 

  • Cushing, J. M.: Integro-differential equations and delay models in population dynamics. Lecture Notes in Biomathematics, Vol. 20. Berlin: Springer 1978

    Google Scholar 

  • Dibrov, B. F., Livshits, M. A., Volkenstein, M. V.: Mathematical model of immune processes. J. Theor. Biol. 65, 609–631 (1977a)

    Google Scholar 

  • Dibrov, B. F., Livshits, M. A., Volkenstein, M. V.: Mathematical model of immune processes. II. Kinetic features of antigen-antibody interrelations. J. Theor. Biol. 69, 23–39 (1977b)

    Google Scholar 

  • Driver, R. D.: Ordinary and delay differential equations. Berlin: Springer 1975

    Google Scholar 

  • Driver, R. D.: Linear differential systems with small delays. J. Diff. Equat. 21, 148–166 (1976)

    Google Scholar 

  • Eisen, H. N.: Immunology. Hagerstown, MD: Harper & Row 1974

    Google Scholar 

  • Fowler, A. C.: An asymptotic analysis of the logistic delay equation. J. Inst. Maths. Applics., to appear (1981)

  • Hood, L. E., Weissmann, I. L., Wood, W. B.: Immunology. Menlo Park, CA: Benjamin/Cummings 1978

    Google Scholar 

  • Jones, G. S.: On the nonlinear differential-difference equation f'= − af(x− 1){1 + f(x)}. J. Math. Anal. Appl. 4, 440–469 (1962a)

    Google Scholar 

  • Jones, G. S.: The existence of periodic solutions of f'= − af(x− 1){1 + f(x)}. J. Math. Anal. Appl. 5, 435–450 (1962b)

    Google Scholar 

  • Li, T. V., Yorke, J. A.: Period three implies chaos. Amer. Math. Monthly 82, 985–992 (1975)

    Google Scholar 

  • Lorenz, E. N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1962)

    Google Scholar 

  • Ludwig, D., Jones, D. D., Holling, C. S.: Qualitative analysis of insect outbreak systems: The spruce budworm and the forest. J. Anim. Ecol. 47, 315–332 (1978)

    Google Scholar 

  • Macdonald, N.: Times lags in biological models. Lecture notes in biomathematics, Vol. 27. Berlin: Springer 1978

    Google Scholar 

  • Mackey, M. C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Google Scholar 

  • Merrill, S. J.: A model of the stimulation of B-cells by replicating antigen-I and II. Math. Biosci. 41, 125–141 and 143–155 (1978a, b)

    Google Scholar 

  • Morris, H. C.: A perturbative approach to periodic solutions of delay-differential equations. J. Inst. Maths. Applics. 18, 15–24 (1976)

    Google Scholar 

  • Murray, J. D.: Asymptotic analysis. Oxford: Clarendon Press 1974.

    Google Scholar 

  • Myshkis, A. D.: Linear differential equations with a retarded argument. (German translation). Berlin: VEB Deutscher Verlag 1955

    Google Scholar 

  • Nye, J. F.: Water flow in glaciers: jökulhlaups, tunnels, and veins, J. Glaciol. 17, 181–207 (1976)

    Google Scholar 

  • Perelson, A. S., Mirmirani, M., Oster, G. F.: Optimal strategies in immunology, I. B-cell differentiation and proliferation. J. Math. Biol. 3, 325–367 (1976)

    Google Scholar 

  • Perelson, A. S., Mirmirani, M., Oster, G. F.: Optimal strategies in immunology II: B memory cell production. J. Math. Biol. 5, 213–256 (1978)

    Google Scholar 

  • Pimbley, G. H.: Periodic solutions of third order predator-prey equations simulating an immune response. Arch. Rat. Mech. Anal. 55, 93–124 (1974)

    Google Scholar 

  • Pimbley, G. H.: Bifurcation behaviour of periodic solutions for an immune response problem. Arch. Rat. Mech. Anal. 64, 169–192 (1977)

    Google Scholar 

  • Romball, C. G., Weigle, W. O.: A cyclical appearance of antibody-producing cells after a single injection of serum protein antigen. J. Exp. Med. 138, 1426–1442 (1973)

    Google Scholar 

  • Rubinow, S. I.: Age-structured equations in the theory of cell populations. In: Studies of mathematical biology, Part II: Populations and communities. (S. A. Levin, ed.) MAA studies in mathematics, Vol. 16. Washington, D. C.: Mathematical Association of America 1978

    Google Scholar 

  • Spiegelberg, H. L.: Biological activities of immunoglobulins of different classes and sub-classes. Adv. Immunol. 19, 256–294 (1974)

    Google Scholar 

  • Tew, J. G., Mandel, T.: The maintenance and regulation of serum antibody levels: Evidence indicating a role for antigen retained in lymphoid follicles. J. Immunol. 120, 1063–1069 (1978)

    Google Scholar 

  • Van Dyke, M. D.: Perturbation methods in fluid mechanics (2nd ed.). Stanford, CA: Parabolic Press 1975

    Google Scholar 

  • Waltman, P., Butz, E.: A threshold model of antigen-antibody dynamics. J. Theor. Biol. 65, 499–512 (1977)

    Google Scholar 

  • Weigle, W. O.: Cyclical production of antibody as a regulatory mechanism in the immune response. Adv. Immunol. 21, 87–111 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, A.C. Approximate solution of a model of biological immune responses incorporating delay. J. Math. Biology 13, 23–45 (1981). https://doi.org/10.1007/BF00276864

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276864

Key words

Navigation