Skip to main content
Log in

Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP 134

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

2-Chloro-4-methylphenoxyacetate is not a growth substrate for Alcaligenes eutrophus JMP 134 and JMP 1341. It is, however, being transformed by enzymes of 2,4-dichlorophenoxyacetic acid metabolism to 2-chloro-4-methyl-cis, cis-muconate, which is converted by enzymatic 1,4-cycloisomerization to 4-carboxymethyl-2-chloro-4-methylmuconolactone as a dead end metabolite. Chemically, only 3,6-cycloisomerization occurs, giving rise to both diastereomers of 4-carboxychloromethyl-3-methylbut-2-en-4-olide. Those lactones harbonring a chlorosubstituent on the 4-carboxymethyl side chain were surprisingly stable under physiological as well as acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Google Scholar 

  • Bruce NC, Cain RB (1988) β-Methylmuconolactone, a key intermediate in the dissimilation of methylaromatic compounds by a modified 3-oxoadipate pathway evolved in nocardioform actinomycetes. FEMS Microbiol Lett 50: 233–239

    Google Scholar 

  • Cain RB, Kirby GW, Rao GV (1989) Stereochemistry of enzymic cyclisation of 3-methyl-cis,cis-muconic acid to form 3-and 4-methylmuconolactone. Chem Commun (J Chem Soc Sect D) 21: 1629–1631

    Google Scholar 

  • Catelani D, Fiecchi A, Galli E (1971) (+)-γ-Carboxymethyl-γ-methyl Δa-butenolide a 1,2-ring-fission product of 4-methyl-catechol by Pseudomonas desmolyticum. Biochem J 121:89–92

    Google Scholar 

  • DeBoer TJ, Bakker HJ (1954) A new method for the preparation of diazomethane. Rec Trav Chim 73: 229–234

    Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolasted from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145: 681–686

    Google Scholar 

  • Dorn E, Knackmuss HJ (1978a) Chemical structure and biodegradability of halogenated aromatic compound: two catechol 1,2-dioxygenases from a 3-chlorobenzoate grown pseudomonad. Biochem J 174: 73–84

    Google Scholar 

  • Dorn E, Knackmuss HJ (1978b) Chemical structure and biodegradability of halogenated aromatic compounds: substituent effects on 1,2-dioxygenation of catechol. Biochem J 174: 85–94

    Google Scholar 

  • Dorn E, Hellwing M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99: 61–70

    Google Scholar 

  • Hartmann J, Reineke W, Knackmuss HJ (1978) Metabolism of 3-chloro-, 4-chloro-and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37: 421–428

    Google Scholar 

  • Knackmuss HJ, Hellwing M, Lackner H, Otting W (1976) Cometabolism of 3-methylbenzoate and methylcatechols by a chlorobenzoate utilizing Pseudomonas: accumulation of (+)-2,5-dihydro-4-methyl-and (+)-2,5-dihydro-2-methyl-5-oxo-fu-ran-2-acetic acid. Eur J Appl Microbiol 2: 267–276

    Google Scholar 

  • Kozarich JW, Chari RVJ, Ngai KL, Ornston LN (1986) Strereochemistry of muconate cycloisomerases. In: Frey PA (ed) Mechanisms of enzymatic reactions: stereochemistry. Elsevier Science Publishing, New York, pp. 233–246

    Google Scholar 

  • Kuhm AE, Schlömann M, Knackmuss HJ, Piper DH (1990) Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem J 266: 877–883

    Google Scholar 

  • Kukor JE, Olsen RH, Siak JS (1989) Recruitment of a chromosomally encoded maleylacetate reductase for degradation of 2,4-dichlorophenoxyacetic acid by plasmid pJP4. J Bacteriol 171: 3385–3390

    Google Scholar 

  • Liu T, Chapman PJ (1984) Purification and properties of a plasmid encoded 2,4-dichlorophenol hydroxylase. FEMS Microbiol Lett 173: 314–318

    Google Scholar 

  • Miller DJ (1981) Toluate metabolite in nocardioform Actinomycetes: utilization of the enzymes of the 3-oxoadipate pathway for the degradation of methyl-substituted analogues. Actinomycetes. Zentralbl Bakt 11 [Suppl]: 355–360

    Google Scholar 

  • Ngai KL, Kallen RG (1983) Enzymes of the β-ketoadipate pathway in Pseudomonas putida. Primary and secondary kinetic and equilibrium deuterium isotope effects upon the interconversion of (+)-muconolactone to cis,cis-muconate catalyzed by cis,cis-muconate cycloisomerase. Biochemistry 22: 5231–5236

    Google Scholar 

  • Pieper DH, Engesser KH, Don RH, Timmis KN, Knackmuss HJ (1985) Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP 134 for the degradation of 4-methylcatechol. FEMS Microbiol Lett 29: 63–67

    Google Scholar 

  • Pieper DH, Reineke W, Engesser KH, Knackmuss HJ (1988) Metabolism of 2,4-dichlorophenoxycetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150: 95–102

    Google Scholar 

  • Pieper DH, Engesser KH, Knackmuss HJ (1989) Regulation of catabolic pathways of phenoxyacetic acids and phenols in Alcaligenes eutrophus JMP 134. Arch Microbiol 151: 365–371

    Google Scholar 

  • Pieper DH, Engesser KH, Knackmuss HJ (1990) (+)-4-Carboxymethyl-2,4-dimethylbut-2-en-4-olide as dead-end metabolite of 2,4-dimethylphenoxyacetic acid or 2,4-dimethylphenol by Alcaligenes eutrophus JMP 134. Arch Microbiol 154: 600–604

    Google Scholar 

  • Piper DH, Stadler-Fritzsche K, Schlömann M, Knackmuss HJ (1992) Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP 134: implications for the degradation of chloro-and methylaromatis via ortho-clevage. In: Galli E, Silver S, Withold B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington, DC, pp. 277–291

    Google Scholar 

  • Powlowski JB, Dagley S (1985) β-Ketoadipate pathway in Trichosporon cutaneum modified for methylsubstituted metabolites. J Bacteriol 163: 1126–1135

    Google Scholar 

  • Reineke W, Knackmuss HJ (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47: 395–402

    Google Scholar 

  • Schlömann M, Fischer P, Schmidt E, Knackmuss HJ (1990a) Enzymatic formation, stability, and spontaneous reations of 4-fluoromuconolactone, a metabolite of thebacterial degradation of 4-fluorobenzoate. J Bacteriol 172: 5119–5129

    Google Scholar 

  • Schlömann M, Pieper DH, Knackmuss HJ (1990b) Enzymes of haloaromatic degradation: variations of Alcaligenes on a theme by Pseudomonas. In: Silver S, Chakrabarty AM, Iglewski B, Kaplan S (eds) Pseudomonas: biotransformations, pathogenesis, and evolving biotechnology. American Society for Microbiology, Washington, DC, pp. 185–196

    Google Scholar 

  • Schlömann M, Schmidt E, Knackmuss HJ (1990c)_Different types of dienelactone hydrolase in 4-fluorobenzoate utilizing bacteria. J Bacteriol 172: 5112–5118

    Google Scholar 

  • Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated armatic compounds. Conversion of chlorinated muconic acids into maleylacetic acid. Biochem J 192: 339–347

    Google Scholar 

  • Schmidt E, Remberg G, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192: 331–337

    Google Scholar 

  • Schmidt K, Liaaen Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorhodaceae I. Okenon als Hauptcarotinoid von Chromatium okenii Petry. Arch Microbiol 46: 117–126

    Google Scholar 

  • Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss HJ (1980) Critical reations in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39: 58–67

    Google Scholar 

  • Streber W, Timmis KN, Zenk MH (1987) Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP 134. J Bacteriol 169: 2950–2955

    Google Scholar 

  • Vollmer MD, Stadler Fritzsche K, Schlömann M (1993) Conversion of 2-chloromaleylactate in Alcaligenes eutrophus JMP 134. Arch Microbiol 159: 182–188

    Google Scholar 

  • Winnacker K, Küchler L (1972) Chemische Technologie, Bd 4. Organische Technologie, Hanser, München, pp. 738–746

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieper, D.H., Stadler-Fritzsche, K., Engesser, KH. et al. Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP 134. Arch. Microbiol. 160, 169–178 (1993). https://doi.org/10.1007/BF00249121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249121

Key words

Navigation