Skip to main content
Log in

Petrogenesis of sulphide-bearing reaction zones in the Coolac ultramafic belt, New South Wales, Australia

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Coolac ultramafic belt consists dominantly of variably serpentinised harzburgite and contains a diversity of tectonic inclusions. Reaction zones of chlorite-, talc- and Ca-Al silicate-rich rocks are commonly developed between serpentinites and either tectonic inclusions or country rocks. The chlorite-and talc-rich parts of the reaction zones typically contain sparsely disseminated to rarely massive Cu- and Fe-bearing sulphides, variable sphalerite, and minor Ni- (-Co-Fe) sulphides, arsenides and sulpharsenides, Pb and Bi minerals. The reaction zones have formed concomitantly with the serpentinisation of the harzburgite at temperatures of 100°–350°C and at pressures of <6 kb. Migration of Ca, Al, Ti, V, Sc, Cu and Zn has occurred from the ultramafic rocks to the reaction zones. The sulphur content of the ultramafic rocks increased during serpentinisation, but decreased markedly in the final stage of the process owing possibly to rising oxygen fugacity. The availability of sulphur during serpentinisation may have enabled sulphide minerals to form from the concentration of base metals in the reaction zones.

Zusammenfassung

Der ultrabasische Gürtel von Coolac besteht vorwiegend aus unterschiedlich serpentinisiertem Harzburgit und weist mannigfaltige tektonische Einschlüsse auf. Reaktionszonen Chlorit-, Talk-, und Ca-Al-Silikat-reicher Gesteine sind gewöhnlich entwickelt im Kontaktbereich zwischen serpentinisiertem Harzburgit und entweder tektonischen Einschlüssen oder Gesteinen der Umgebung. Die Chlorit- und Talk-reichen Partien der Reaktionszone enthalten typischerweise fein verteilte, seltene Konzentrationen von Cu- und Feführenden Sulphiden, mit wechselndem Zinkblendegehalt, und untergeordnet Ni(-Co-Fe) Sulphide, Arsenide und Schwefel-haltige Arsenide, sowie Pb-und Bi-haltige Mineralien. Die Reaktionszonen entstanden zusammen mit der Serpentinisierung des Harzburgits bei Temperaturen von 100°–350°C und unter einem Druck von <6 Kb. Migration von Ca, Al, Ti, V, Sc, Cu und Zn verlief von den ultrabasischen Gesteinen zu den Reaktionszonen. Der Schwefelgehalt der ultrabasischen Gesteine nahm während der Serpentinisierung zu, verringerte sich jedoch auffällig im letzten Stadium des Prozesses, möglicherweise wegen der zunehmenden Verflüchtigung des Sauerstoffes. Das Angebot von Schwefel während der Serpentinisierung mag der Grund für die Bildung von Sulphiden aus Schwermetallkonzentration in den Reaktionszonen gewesen sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antun, P., El Goresy, A., Ramdohr, P.: Ein neuartiger Typ „hydrothermaler“ Cu-Ni Lagerstätten. Mineral. Deposita (Berl.) 1, 113–132 (1966).

    Google Scholar 

  • Ashley, P. M., Chenhall, B. E., Cremer, P. L., Irving, A. J.: The geology of the Coolac Serpentinite and adjacent rocks east of Tumut, New South Wales. J. Proc. Roy. Soc. N. S. W. 104, 11–29 (1971).

    Google Scholar 

  • Barnes, I., O'Neil, J. R.: The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinisation, western United States. Geol. Soc. Am. Bull. 80, 1947–1960 (1969).

    Google Scholar 

  • Rapp, J. B., O'Neil, J. R., Sheppard, R. A., Gude, A. J., III: Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinisation. Contr. Mineral. Petrol. 35, 263–276 (1972).

    Google Scholar 

  • Benson, W. N.: The tectonic conditions accompanying the intrusion of basic and ultrabasic igneous rocks. U.S. Natl. Acad. Sci. Mem. 19, 90pp. (1926).

  • Černy, P.: Comments on serpentinisation and related metasomatism. Am. Mineralogist 53, 1377–1385 (1968).

    Google Scholar 

  • Chamberlain, J. A.: Sulfides in the Muskox Intrusion. Can. J. Earth Sci. 4, 105–153 (1967).

    Google Scholar 

  • Delabio, R. N.: Mackinawite and valleriite in the Muskox Intrusion. Am. Mineralogist 50, 682–695 (1965).

    Google Scholar 

  • McLeod, C. R., Traill, R. J., Lachance, G. R.: Native metals in the Muskox Intrusion. Can. J. Earth Sci. 2, 188–215 (1965).

    Google Scholar 

  • Coleman, R. G.: New Zealand serpentinites and associated metasomatic rocks. N. Z. Geol. Surv. Bull. 76, 102pp. (1966).

    Google Scholar 

  • -- Low temperature reaction zones and alpine ultramafic rocks of California, Oregon and Washington. U.S. Geol. Surv. Bull. 1247, 49pp. (1967).

  • — Plate tectonic emplacement of upper mantle peridotites along continental edges. J. Geophys. Res. 76, 1212–1222 (1971a).

    Google Scholar 

  • — Petrologic and geophysical nature of serpentinites. Geol. Soc. Am. Bull. 82, 897–917 (1971b).

    Google Scholar 

  • Keith, T. E.: A chemical study of serpentinisation — Burro Mountain, California. J. Petrology 12, 311–328 (1971).

    Google Scholar 

  • Davies, H. L.: Peridotite-gabbro-basalt complex in eastern Papua: an overthrust plate of oceanic mantle and crust. Bur. Miner. Resour. Aust. Bull. 128, 46pp. (1971).

    Google Scholar 

  • Dewey, J. F., Bird, J. M.: Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophys. Res. 76, 3179–3206 (1971).

    Google Scholar 

  • Engin, T., Hirst, D. M.: Serpentinisation of harzburgites from the alpine peridotite belt of southwest Turkey. Chem. Geol. 6, 281–295 (1970).

    Google Scholar 

  • Ewers, W. E., Hudson, D. R.: An interpretive study of a nickel-iron sulfide ore intersection, Lunnon Shoot, Kambalda, Western Australia. Econ Geol. 67, 1075–1092 (1972).

    Google Scholar 

  • Franklin, B.: The North Mooney Complex — a zoned mafic-ultramafic body associated with the Coolac Serpentinite Belt. 44th A. N. Z. A. A. S. Cong., Sydney, Sect. 3 abs., 26 (1972).

    Google Scholar 

  • Gass, I. G.: The ultrabasic volcanic assemblage of the Troodos Massif, Cyprus. In: Ultramafic and Related Rocks, p. 121–134 (ed. P. J. Wyllie), New York: Wiley 1967.

    Google Scholar 

  • George, R. J.: Sulphide-silicate reactions during metamorphism of the Nairne pyrite deposit. Proc. Australasian Inst. Mining Met. 230, 1–7 (1969).

    Google Scholar 

  • Golding, H. G.: The constitution and genesis of the chrome ores in the Coolac Serpentine Belt, New South Wales, Australia. Ph. D. thesis, Univ. New South Wales (unpubl.) (1966).

  • — The Coolac-Goobarragandra ultramafic belt, N. S. W. J. Proc. Roy. Soc. N. S. W. 102, 173–187 (1969).

    Google Scholar 

  • Harris, D. C., Vaughan, D. J.: Two fibrous iron sulfides and valleriite from Cyprus with new data on valleriite. Am. Mineralogist 57, 1037–1052 (1972).

    Google Scholar 

  • Hostetler, P. B., Coleman, R. G., Mumpton, F. A., Evans, B. W.: Brucite in alpine serpentinites. Am. Mineralogist 51, 75–98 (1966).

    Google Scholar 

  • Jackson, E. D., Thayer, T. P.: Some criteria for distinguishing between stratiform, concentric and alpine peridotite-gabbro complexes. 24th Intern. Geol. Congr., Montreal, Proc. Sec. 2, 289–296 (1972).

    Google Scholar 

  • Krieger, P., Hagner, A. F.: Gold-nickel mineralisation at Alistos, Sinaloa, Mexico. Am. Mineralogist 28, 257–271 (1943).

    Google Scholar 

  • Kullerud, G., Yoder, H. S.: Sulfide-silicate reactions. Carnegie Inst. Wash. Yb. 63, 218–222 (1964).

    Google Scholar 

  • — Sulfide-silicate reactions. Carnegie Inst. Wash. Yb. 64, 192–193 (1965).

    Google Scholar 

  • Leonardos, O. H., Jr., Fyfe, W. S.: Serpentinites and associated albitites, Mocassin Quadrangle, California. Am. J. Sci. 265, 609–618 (1967).

    Google Scholar 

  • Mallio, W. J., Gheith, M. A.: Textural and chemical evidence bearing on sulfide-silicate reactions in metasediments. Mineral. Deposita (Berl.) 7, 13–17 (1972).

    Google Scholar 

  • Milton, C., Milton, D. J.: Nickel-gold ore of the Mackinaw Mine, Snohomish County, Washington, Econ. Geol. 53, 426–447 (1958).

    Google Scholar 

  • Naldrett, A. J., Gasparrini, E. L.: Archaean nickel sulphide deposits in Canada: their classification, geological setting and genesis with some suggestions as to exploration. Spec. Publs. Geol. Soc. Aust. 3, 201–226 (1971).

    Google Scholar 

  • Nesbitt, R. W.: The case for liquid immiscibility as a mechanism for nickel sulphide mineralisation in the Eastern Goldfields, Western Australia. Spec. Publs. Geol. Soc. Aust. 3, 253 (1971).

    Google Scholar 

  • Page, N. J.: Serpentinisation at Burro Mountain, California. Contr. Mineral. Petrol. 14, 321–342 (1967a).

    Google Scholar 

  • — Serpentinisation considered as a constant volume metasomatic process: a discussion. Am. Mineralogist 52, 545–549 (1967b).

    Google Scholar 

  • Purvis, A. C., Nesbitt, R. W., Hallberg, J. A.: The geology of part of the Carr Boyd Rocks complex and its associated nickel mineralization, Western Australia. Econ. Geol. 67, 1093–1113 (1972).

    Google Scholar 

  • Ramdohr, P.: A widespread mineral association connected with serpentinisation. Neues Jahrb. Mineral., Abhandl. 107, 241–265 (1967).

    Google Scholar 

  • Schlocker, J.: Rodingite from Angel Island, San Francisco Bay, California. U.S. Geol. Surv. Prof. Pap. 400B, B311–B312 (1960).

  • Shenon, P. J.: A massive sulphide deposit of hydrothermal origin in serpentine. Econ. Geol. 27, 597–613 (1932).

    Google Scholar 

  • Taylor, H. P., Coleman, R. G.: O18/O16 ratios of coexisting minerals in glaucophane-bearing metamorphic rocks. Geol. Soc. Am. Bull. 79, 1727–1756 (1968).

    Google Scholar 

  • Thayer, T. P.: Serpentinisation considered as a constant volume metasomatic process. Am. Mineralogist 51, 685–710 (1966).

    Google Scholar 

  • — Authigenic, polygenic and allogenic ultramafic and gabbroic rocks as hosts for magmatic ore deposits. Spec. Publs. Geol. Soc. Aust. 3, 239–251 (1971).

    Google Scholar 

  • Vokes, F. M.: A review of the metamorphism of sulphide deposits. Earth-Sci. Rev. 5, 99–143 (1969).

    Google Scholar 

  • Wenner, D. B., Taylor, H. P., Jr.: Temperatures of serpentinisation of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite. Contr. Mineral. Petrol. 32, 165–185 (1971).

    Google Scholar 

  • Wood, B. L.: Metamorphosed ultramafites and associated formations near Milford Sound, New Zealand. N. Z. J. Geoph. 15, Geol. 88–128 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashley, P.M. Petrogenesis of sulphide-bearing reaction zones in the Coolac ultramafic belt, New South Wales, Australia. Mineral. Deposita 8, 370–378 (1973). https://doi.org/10.1007/BF00207518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207518

Keywords

Navigation