Skip to main content
Log in

Vibrational communication in the fiddler crab, Uca pugilator

I. Signal transmission through the substratum

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    During courtship behavior, males of the fiddler crab, Uca pugilator, drum on the ground with their large chela. The types of waves this produces and some of their properties were investigated using a laser Doppler vibrometer and accelerometers under field and laboratory conditions.

  2. 2.

    Rhythmical impact onto the substratum by Uca produces 3 types of surface waves: Rayleigh waves and Love waves which contain most of the energy, and the weaker surface P-waves.

  3. 3.

    The group velocity of Love-waves is 50–60 m/s in wet sand. Rayleigh waves travel at 70–80 m/s in wet sand and obout 40 m/s in dry sand. The propagation velocity of surface P-waves is 150–160 m/s in compact wet sand and about 140 m/s in wet sand perforated by crab burrows. The group velocity of Rayleigh and Love waves is not influenced by the presence of crab burrows.

  4. 4.

    Fast Fourier transform (FFT) spectra of single beats reveal that the energy maxima of Rayleigh and Love waves lie in the frequency range of 340–370 Hz, i.e., at much higher frequencies than the beat rate of the fiddler crabs, which is usually below 40/s. The optimal frequency is independent of the distance from the signalling male.

  5. 5.

    In the optimal frequency range, the specific damping coefficient α 10 for Rayleigh waves is very low and amounts to 0.13–0.16 dB/cm in wet sand and 0.23–0.49 dB/cm in dry sand. Substrate vibrations of higher frequencies are more strongly damped.

  6. 6.

    Considering the size of a fiddler crab, the physical properties of the Rayleigh and Love waves in the optimal frequency range provide a suitable signal for localizing mechanisms which rely on time or phase differences but not on intensity or spectral differences of propagating substrate vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LDV :

laser Doppler vibrometer

References

  • Achenbach JD (1973) Wave propagation in elastic solids. In: Lauwerier HA, Koiter WT (eds) Applied mathematics and mechanics vol 16. North-Holland Publ, Amsterdam London

    Google Scholar 

  • Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by Laser Doppler vibrometry. J Comp Physiol 150:483–491

    Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology. Theory and methods. Vol I & II. Freeman, San Francisco

    Google Scholar 

  • Altevogt R (1957) Vibration als semantisches Mittel bei Crustaceen. Wiss Z Karl-Marx-Univ Leipzig, Math-Nat Reihe 15:471–476

    Google Scholar 

  • Altevogt R (1959) Ökologische und ethologische Studien an Europas einziger Winterkrabbe Uca tangeri Eydoux. Z Morphol Ökol Tiere 48:123–146

    Google Scholar 

  • Altevogt R (1970) Form and Funktion der vibratorischen Signale von Uca tangeri und Uca inaequalis (Crustacea, Ocypodidae). Forma et Functio 2:178–187

    Google Scholar 

  • Attenborough K (1982) Acoustic characteristics of porous materials. Physics Reports 82:179–227

    Google Scholar 

  • Barth FG (1982) Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication. Princeton Univ Press, Princeton, pp 67–122

    Google Scholar 

  • Barth FG (1986) Vibrationssinn und vibratorische Umwelt von Spinnen. Naturwissenschaften 73:519–530

    Google Scholar 

  • Born WT (1941) The attenuation constant of earth materials. Geophysics 6:132–148

    Google Scholar 

  • Brownell PH (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479–482

    Google Scholar 

  • Buchave P (1975) Laser Doppler vibration measurements using variable frequency shift. DISA Inf 18:15–20

    Google Scholar 

  • Christy JH (1980) The mating system of the sand fiddler crab, Uca pugilator. PhD Thesis, Cornell University

  • Crane J (1975) Fiddler crabs of the world. Ocypodidae: Genus Uca. Princeton Univ Press, Princeton

    Google Scholar 

  • Elliot SE, Wiley BF (1975) Compressional velocities of partially unconsolidated sands. Geophysics 40:949–954

    Google Scholar 

  • Ewing WM, Jardetzky WS, Press F (1957) Elastic waves in layered media. McGraw-Hill, New York Toronto London

    Google Scholar 

  • Förtsch O (1950) Untersuchungen von Biegewellen in Platten. Messung ihrer Gruppen- und Phasengeschwindigkeit. Gerl Beitr Geophys 61:272–290

    Google Scholar 

  • Graff KF (1975) Wave motion in elastic solids. Clarendon Press, Oxford

    Google Scholar 

  • Hagen HO von (1962) Freilandstudien zur Sexual- und Fortpflanzungsbiologie von Uca tangeri in Andalusien. Z Morphol Ökol Tiere 51:611–725

    Google Scholar 

  • Hagen HO von (1985) Visual and acoustic display in Uca mordox and U. burgersi, sibling species of neotropical fiddler crabs. II. Vibration signals. Behaviour 85:204–228

    Google Scholar 

  • Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. J Mech Found Div, Proc Am Soc Civil Engineers SM1 3407:33–65

    Google Scholar 

  • Heinze J (1984) FFT Digital-Analysatoren. VFI 17:53–58

    Google Scholar 

  • Iida K (1938) The velocity of elastic waves in sand. Bull Earthq Res Inst Tokio 16:131–145

    Google Scholar 

  • Iida K (1939) Velocity of elastic waves in granular substances. Bull Earthq Res Inst Tokio 17:783–808

    Google Scholar 

  • Ishimoto M, Iida K (1936) Determinations of elastic constants of soil by means of vibration methods. Part I. Young's modulus. Bull Earthq Res Inst Tokio 14:632–657

    Google Scholar 

  • Ishimoto M, Iida K (1937) Determinations of elastic constants of soil by means of vibration methods. Part II. Modulus of rigidity and Poisson's ratio. Bull Earthq Res Inst Tokio 15:67–87

    Google Scholar 

  • Kolsky H (1963) Stress waves in solids. Dover Publ, New York

    Google Scholar 

  • Markl H (1968) Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. II. Erzeugung und Eigenschaften der Signale. Z Vergl Physiol 60:103–150

    Google Scholar 

  • Markl H (1969) Verständigung durch Vibrationssignale bei Arthropoden. Naturwissenschaften 56:499–505

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 332–353

    Google Scholar 

  • Markl H (1985) Manipulation modulation, information, cognition: some of the riddles of communication. In: Hölldobler B, Lindauer M (eds) Fortschr Zool 31:163–194

  • Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203

    Google Scholar 

  • Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 321–331

    Google Scholar 

  • Ramspeck A, Schulze GA (1938) Die Dispersion elastischer Wellen im Boden. Veröff Inst Deutsch Forschungsges Bodenmechanik (Degebo) Techn Hochsch Berlin 6:1–28

    Google Scholar 

  • Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466

    Google Scholar 

  • Salmon M, Horch KW (1972) Acoustic signalling and detection by semi-terrestrial crabs of the family Ocypodidae. In: Winn HE, Olla BL (eds) Behavior of marine animals, vol I, Invertebrates. Plenum Press, New York, pp 60–96

    Google Scholar 

  • Sommerfeld A (1970) Vorlesungen über theoretische Physik II. Mechanik der deformierbaren Medien. Akad Verlagsges, Leipzig

    Google Scholar 

  • White JE (1965) Seismic waves — radiation, transmission, and attenuation. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In partial fulfillment of the requirements for the Dr. rer. nat. degree, University of Konstanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aicher, B., Tautz, J. Vibrational communication in the fiddler crab, Uca pugilator . J Comp Physiol A 166, 345–353 (1990). https://doi.org/10.1007/BF00204807

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204807

Key words

Navigation