Skip to main content
Log in

Sulfide minerals in Seelyville Coal III, Chinook Mine, Indiana

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Sulfide minerals in coal bed III at the Chinook Mine, Indiana, are pyrite, marcasite, and rarely sphalerite. Pyrite occurs as framboids concentrated mainly in exinite, as bands or lenses in vitrinite and clay partings, as cell fillings in fusinite, and in cleats. Marcasite normally occurs in association with clusters of pyrite framboids within micro-organic remains. Sphalerite occurs exclusively in fusinite associated with cleat pyrite. The iron sulfides, which are of authigenic origin, were formed during the biochemical stage of coalification during the accumulation and compaction of peat. The factor that limited their formation in such an environment was the availability and reactivity of iron. Chemical heterogeneity in the peat swamps where the sulfides formed existed even on a microscopic scale. The iron sulfides were commonly precipitated in localized micro-environments that were favorable for their formation. The metamorphic stage of coalification did not affect the iron sulfides significantly, although it may have been responsible for the recrystallization of pyrite framboids and minor deformation of pyrite in fusinite and its local mobilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E. T., Crenshaw, J. L.: Effect of temperature and acidity in the formation of marcasite (FeS2) and wurtzite (ZnS): A contribution to the genesis of unstable forms. Am. J. Sci. 38, 393–431 (1914)

    Google Scholar 

  • — Johnston, J., Larsen, E. S.: The mineral sulfides of iron with crystallographic study. Am. J. Sci. 33, 169–236 (1912)

    Google Scholar 

  • Baas-Becking, L. G., Kaplan, I. R., Moore, D.: Limits of the natural environment in terms of pH and oxidation-reduction potentials. J. Geol. 68, 243–284 (1960)

    Google Scholar 

  • Berner, R. A.: Iron sulfides formed from aqueous solutions at low temperature and atmospheric pressures. J. Geol. 72, 292–306 (1964a)

    Google Scholar 

  • — Stability fields of iron minerals in anaerobic marine sediments. J. Geol. 72, 826–834 (1964b)

    Google Scholar 

  • — The synthesis of framboidal pyrite. Econ. Geol. 64, 383–384 (1969a)

    Google Scholar 

  • — Migration of iron and sulfur within anaerobic sediments during early diagenesis. Am. J. Sci. 267, 19–42 (1969b)

    Google Scholar 

  • — Sedimentary iron formation. Am. J. Sci. 268, 1–23 (1970)

    Google Scholar 

  • — Principals of chemical sedimentology. New York: McGraw-Hill 1971

    Google Scholar 

  • Bohor, B. F., Gluskoter, H. J.: Boron in illite as an indicator of paleosalinity of Illinois coals. J. Sed. Petrol. 43, 945–956 (1973)

    Google Scholar 

  • Breger, I. A.: Geochemistry of coal. Econ. Geol. 68, 823–841 (1958)

    Google Scholar 

  • Buerger, M. J.: The pyrite marcasite relation. Am. Mineral. 19, 37–61 (1934)

    Google Scholar 

  • Carroll, D.: The role of clay minerals in the transport of iron. Geochim. Cosmochim. Acta 14, 1–27 (1958)

    Google Scholar 

  • Christopher, J. P., Hegenauer, J. C., Saltman, P. D.: Iron metabolism as a function of chelation. In: Trace Element Metabolism in Animals, H. C. Hoekstra, J. W. Scittie, H. E. Ganther, W. Mertz, Eds., pp. 133–145. University Park Press 1974

  • Cooper, B.S., Murchison, D.G.: Organic geochemistry of coal. In: Organic Geochemistry, Methods and Results, G. Eglinton, M. T. G. Murphy, Eds., pp. 699–726. Berlin-Heidelberg-New York: Springer-Verlag 1969

    Google Scholar 

  • Flaig, W.: Biochemical factors in coal formation. In: Coal and Coal Bearing Strata, D. Murchison, T. S. Westall, Eds., pp. 197–232. New York: American Elsevier 1968

    Google Scholar 

  • Goldhaber, M. B., Kaplan, I. R.: The sedimentary sulfur cycle. In: The Sea, E. D. Goldberg, Ed., Vol. 5, pp. 569–655. New York: John Wiley 1974

    Google Scholar 

  • Gluskoter, H. J., Hatch, J. R., Lindahl, P. C.: Zinc in coals of the Illinois basin. Abstract, Geological Society of America Meeting, Dallas, 637 (1973)

  • International Committee for Coal Petrology. International Handbook for Coal Petrography, 2nd ed. Centre National de La Recherche Scientifique, Paris (1963)

    Google Scholar 

  • Krevelen, D. W. van: Geochemistry of coal. In: Organic Geochemistry, I. A. Breger, Ed, pp. 183–247. New York: Pergamon Press 1963

    Google Scholar 

  • Love, L. G.: Further studies on microorganisms and the presence of syngenetic pyrite. Paleontology 5, 444–459 (1962)

    Google Scholar 

  • — Micro-organic material with diagenetic pyrite from the lower Proterozoic Mount Isa shale and a carboniferous shale. Proc. Yorkshire Geol. Soc. 35, 273–309 (1965)

    Google Scholar 

  • — Early diagenetic iron sulfide in recent sediments of the Wash (England). Sedimentology 9, 327–352 (1967)

    Google Scholar 

  • — Sulfides of metals in recent sediments. In: Sedimentary Ores, Ancient and Modern, C. H. James, Ed., pp. 31–60. England: University of Leicester Spec. Pub. 1 1969

    Google Scholar 

  • — Early diagenetic polyframboidal pyrite, primary and redeposited from the Wenlackian Denbigh grit group, Conway, North Wales, U.K. J. Sed. Petro. 41, 1038–1044 (1971)

    Google Scholar 

  • — Amstutz, G. C.: Review of microscopic pyrite from the Devonian Chattanooga shale and Rammelsberg Banderz. Fortschr. Miner. 43, 273–309 (1966)

    Google Scholar 

  • — Murray, J. W.: Biogenic pyrite in recent sediments of Christchurch Harbour, England. Am. J. Sci. 261, 433–448 (1963)

    Google Scholar 

  • Neavel, R. C.: Petrographic and chemical composition of Indiana coals. Indiana Geol. Survey Bull. 22, 1–81 (1961)

    Google Scholar 

  • Neves, R., Sullivan, J. J.: Modification of fossil spore exines associated with the presence of pyrite crystals. Micropaleontology 10, 443–452 (1964)

    Google Scholar 

  • Ong, H., Ling, Swanson, V. E.: Adsorption of copper by peat lignite and bituminous coal. Econ. Geol. 61, 1214–1232 (1966)

    Google Scholar 

  • Papunen, H.: Framboidal texture of the pyritic layer found in a peat bog in S. E. Finland. C. R.Soc. Geol. Finland 38, 117–125 (1966)

    Google Scholar 

  • Powell, R. L.: Coal strip mined land in Indiana. Indiana Geol. Survey Special Report 6, 1–17 (1972)

  • Rickard, D. T.: The chemistry of iron sulfide formation at low temperature. Stockholm Contr. Geology 20, 67–95 (1969)

    Google Scholar 

  • — Limiting conditions for synsedimentary sulfide ore formation. Econ. Geol. 68, 605–677 (1973)

    Google Scholar 

  • — Kinetics and mechanisms of pyrite formation at low temperatures. Am. J. Sci. 275, 636–652 (1975)

    Google Scholar 

  • Rising, A. B.: Phase relations among pyrite, marcasite and pyrhotite below 300°C. Ph. D. Dissertation, The Pennsylvania State University (1973)

  • Schopf, J. M.: Was decay important in origin of coal? J. Sed. Petrology 22, 61–69 (1952)

    Google Scholar 

  • — Ehlers, E. G., Stiles, D. V., Birle, J. D.: Fossil iron bacteria preserved in pyrite. Proc. Amer. Phil. Soc. 109, 283–308 (1965)

    Google Scholar 

  • Silverman, M. P., Ehrlich, H. L.: Microbal formation and degradation of minerals. In: “Advances in Applied Microbiology” 6, 153–206 (1964)

    Google Scholar 

  • Smith, J. W., Batts, B. D.: The distribution and isotopic composition of sulfur in coal. Geochim. Cosmochim. Acta 38, 121–233 (1974)

    Google Scholar 

  • Sweeney, R. E., Kaplan, I. R.: Pyrite framboidal formation: Laboratory synthesis and marine sediments. Econ. Geol. 68, 618–634 (1973)

    Google Scholar 

  • Szalay, A., Szilagyi, M.: Accumulation of microelements in peat humic acids and coal. In: Advances in Organic Geochemistry, P. A. Schenck, I. Hovenaar, Eds., pp. 567–576. New York: Pergamon Press 1969

    Google Scholar 

  • White, D.: Role of water conditions in the formation and differentiation of common (banded) coals. Econ. Geol. 28, 556–570 (1933)

    Google Scholar 

  • Ziebold, T. O., Ogilvie, R. E.: An empirical method for electron microanalysis. Analytical Chemistry 36, 322–327 (1964)

    Google Scholar 

  • Zobell, C. E.: Organic geochemistry of sulfur. In: Organic Geochemistry, I. A. Breger, Ed., pp. 543–578. New York: Pergamon Press 1963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boctor, N.Z., Kullerud, G. & Sweany, J.L. Sulfide minerals in Seelyville Coal III, Chinook Mine, Indiana. Mineral. Deposita 11, 249–266 (1976). https://doi.org/10.1007/BF00203077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203077

Keywords

Navigation