Skip to main content
Log in

Fluid inclusion evidence for the physicochemical conditions of sulfide deposition in the Olympias carbonate-hosted Pb-Zn(Au, Ag) sulfide ore deposit, E. Chalkidiki peninsula, N. Greece

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Olympias Pb-Zn(Au, Ag) sulfide ore deposit, E. Chalkidiki, N. Greece, is hosted by marbles of the polymetamorphic Kerdilia Formation of Paleozoic or older age. The geologic environment of the ore also comprises biotite-hornblende gneisses and amphibolites intruded by Tertiary pegmatite-aplite dikes, lamprophyre dikes, the 30-Ma Stratoni granodiorite, and porphyritic stocks. Only limited parts of the deposit display shear folding and brecciation; most of it is undeformed. Microthermometry of fluid inclusions in gangue syn-ore quartz indicates three types of primary and pseudosecondary inclusions: (1) H2O-rich, 1–18 wt.% NaCl equivalent, <3.6 mol% CO2; (2) H2O-CO2 inclusions, <4wt.% NaCl equivalent, with variable CO2 contents, coexisting in both undeformed and deformed ore; (3) aqueous, highsalinity (28–32 wt,% NaCl equivalent) inclusions found only in undeformed ore. Type 2 inclusions are differentiated into two sub-types: (2a) relatively constant CO2 content in the narrow range of 8–15 mol% and homogenization to the liquid phase; (2b) variable CO2 content between 18 and 50 mol% and homogenization to the vapor phase. Type 1 and 2b inclusions are consistent with trapping of two fluids by unmixing of a high-temperature, saline, aqueous, CO2-bearing fluid of possible magmatic origin, probably trapped in type 2a inclusions. Fluid unmixing and concomitant ore mineralization took place at temperatures of 350 ± 30 °C and fluctuating pressures of less than 500 bar, for both undeformed and deformed ores. The wide salinity range of type 1 inclusions probably represents a complex effect of salinity increase, due to fluid unmixing and volatile loss, and dilution, due to mixing with low-salinity meteoric waters. High solute enrichment of the residual liquid, due to extreme volatile loss during unmixing, may account for high salinity type 3 inclusions. The Olympias fluid inclusion salinity-temperature gradients bear similarities to analogous gradients related to Pb-Zn ores formed in “granite”-hosted, low-T distalskarn, skarn-free carbonate-replacement and epithermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angus, S., Armstrong, B., De Reuc, K.M. (1976) International thcrmodynamic tables of fluid state 3: carbon dioxide. Pergamon Press, Oxford, 386 pp

    Google Scholar 

  • Bodnar, R.J., Burnham, C.W., Sterner, S.M. (1985) Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium in the system H2O-NaCl to 1000 °C and 1500 bar. Geochim. Cosmochim. Acta 49:1861–1873

    Google Scholar 

  • Borisenko, A.S. (1977) Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Soviet. Geol. Geophys 18:11–19

    Google Scholar 

  • Bowers, T.S., Helgeson, H.C. (1983) Calculation of the thermodynamic and geochemical consequences of non ideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 47:1247–1275

    Article  Google Scholar 

  • Brown, P.E. (1989) FLINCOR: a microcomputer program for the reduction and investigation of fluid inclusion data. Am. Mineral. 74:1390–1393

    Google Scholar 

  • Burnham, C.W. (1979) Magmas and hydrothermal fluids. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley and Sons, New York, pp. 71–136

    Google Scholar 

  • Bussell, M.A., Alpers, C.N., Petersen, U., Shepherd, T.J., Bermudez, C., Baxter, A.N. (1990) The Ag-Mn-Pb-Zn vein, replacement and skarn deposits of Uchucchaeua. Peru: studies of structure, mineralogy, metal zoning, Sr isotopes and fluid inclusions. Econ. Geol. 85:1348–1383

    Google Scholar 

  • Casadevall, T., Ohmoto, H. (1977) Sunnyside mine, Eureka mining district, San Juan, Colorado: geochemistry of gold and base metal ore deposition in a volcanic environment. Econ. Geol. 72:1285–1320

    Google Scholar 

  • Collins, P.L.F. (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol. 74:1435–1444

    Google Scholar 

  • Crawford, M.L. (1981) Phase equilibria in aqueous fluid inclusions. Mineralog. Assoc. Canada Short Course Handbook 6:75–100

    Google Scholar 

  • Diamond, L.W. (1990) Fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions in late-Alpine gold-quartz veins at Brusson, Val D'Ayas, NW Italian Alps. Am. J. Sci. 290:912–958

    Google Scholar 

  • Diamond, L.W. (1992) Stability of CO2 clathrate hydrate + CO2 (liquid-)-CO2 vapor + aqueous KCl-NaCl solutions: experimental determination and application to salinity estimates of fluid inclusions. Geochim. Cosmochim. Acta 56:273–280

    Article  Google Scholar 

  • Drummond, S.E., Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 80:126–147

    Google Scholar 

  • Ellis, A.J. (1979) Explored geothermal systems. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits, 2nd edn. Springer, New York, pp. 632–683

    Google Scholar 

  • Erwood, R.J., Kesler, S.E., Cloke, P.L. (1979) Compositionally distinct, saline hydrothermal solutions, Naica mine, Chihuaua, Mexico. Econ. Geol. 74:95–108

    Google Scholar 

  • Gehrig, M. (1980) Phasengleichgewichte und pVT-Daten ternaerer mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550 C. Hochschulsammlung Naturwissenschaft, Chemie Band l, Hochschulverlag, Freiburg, 109 pp

    Google Scholar 

  • Gilg, H.A., Frei, R., Kalogeropoulos, S.I., Nicolaou, M. (1992) Metamorphism and polygenesis of the Madem Lakos polymetallic Sulfide deposit, Greece-a discussion. Econ. Geol. 87:1184–1193

    Google Scholar 

  • Gilg, H.A. (1993) Geochronology (K-Ar), fluid inclusion, and stable isotope (C,H,O) studies of skarn, porphyry copper, and carbonate-hosted Pb-Zn (Au, Ag) replacement deposits in the Kassandra mining district. Unpub. Ph.D. Thesis, ETH Zurich, 153 PP

  • Gilg, H.A., Frei, R. (1994) Chronology of magmatism and mineralization in the Kassandra mining area, Greece. The potentials and limitations of dating hydrothermal ilutes. Geochim. Cosmochim. Acta 58:2107–2122

    Article  Google Scholar 

  • Godwin, C.I., Watson, P.H., Shen, K. (1986) Genesis of the Lass vein system, Beaverdell silver camp, south-central British Columbia. Can. J. Earth Sci. 23:1615–1626

    Google Scholar 

  • Haas, J.L., Jr. (1976) Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solutions. US Geol. Survey Bull., 1421-A, 73 pp

  • Hedenquist, J.W., Henley, R.W. (1985) The importance of CO2 freezing point measurements of fluid inclusions: evidence for geothermal systems and implications for epithermal ore deposition. Econ. Geol. 80:1379–1406

    Google Scholar 

  • Higgins, N.C. (1985) Wolframite deposition in a hydrothermal vein system: the Grey River tungsten prospect, Newfoundland, Canada. Econ. Geol. 80:1297–1327

    Google Scholar 

  • Kalogeropoulos, S.I., Bitzios, D., Eliopoulos, D., Veranis, N. (1987) Geological, mineralogical and geochemical study of the Olympias type Pb-Zn (Au, Ag) sulfide ore deposit, E. Chalkidiki, N. Greece. Contribution to its metallogeny. Mineral Dep. Res. 19, I.G.M.E., 36 pp

  • Kalogeropoulos, S.I., Kilias, S.P. (1989) Oxygen (18O) and carbon (13C) isotopic changes in carbonate rocks and minerals in relation to the Olympias Pb-Zn (Au, Ag) sulfide mineralization, E, Chalkidiki, N. Greece. Contribuion to metallogeny and exploration. Geol. Soc. Greece Bull. 23/2:261–269 (in Greek with English Abstract)

    Google Scholar 

  • Kalogeropoulos, S.I., Kilias, S.P., Bitzios, D.C., Nicolaou, M., Both, R.A. (1989) Genesis of the Olympias carbonate-hosted Pb-Zn (Au, Ag) sulfide ore deposit, Eastern Chalkidiki Peninsula, N. Greece. Econ. Geol. 84:1210–1234

    Google Scholar 

  • Kamilli, R.J., Ohmoto, H. (1977) Paragenesis, zoning, fluid inclusion and isotopic studies of the Finlandia vein, Colqui district, central Peru. Econ. Geol. 72:950–982

    Google Scholar 

  • Kilias, S.P., Kalogeropoulos, S.I. (1989) Physicochemical conditions during sulfide formation of the Olympias carbonatehosted Pb-Zn (Au, Ag) sulfide ore deposit, eastern Chalkidiki Peninsula, N. Greece: evidence from fluid inclusions and arsenopyrite geothermometry. Geol. Soc. Greece Bull. 23/2:271–282 (in Greek with English Abstract)

    Google Scholar 

  • Kockel, F., Molat, H., Walther, H. (1977) Erlanterung en zur geologiscen Karte der Chalkidiki und angrenzender Gebiete 1∶100 000, Nordgriechenland. Bundesamt. Geowiss. Rohst., Hannover, 119 pp

    Google Scholar 

  • Kwak, T.A.P. (1986) Fluid inclusions in skarns (carbonate replacement deposits). J. Metam. Geol. 4:363–384

    Google Scholar 

  • Lynch, J.V.G., Longstaffe, F.J., Nesbitt, B.E. (1990) Stable isotopic and fluid inclusion indications of large-scale hydrothermal paleoflow, boiling, and fluid mixing in the Keno Hill Ag-Pb-Zn district, Yukon Territory, Canada. Geochim. Cosmochim. Acta. 54:1045–1059

    Article  Google Scholar 

  • Mantzos, L.A. (1989) Geology and lithogeochemistry of the Olympias carbonate-hosted Pb-Zn sulfide deposit, Chalkidiki, Greece. Unpub. Ph.D. Thesis, Imperial College, University of London, 404 pp

  • Megaw, P.K.M., Ruiz, J., Titley, S.R. (1988) High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of Northern Mexico. Econ. Geol. 83:1856–1885

    Google Scholar 

  • Meinert, L.D. (1987) Skarn zonation and fluid evolution in the Groundhog mine, Central mining district, New Mexico. Econ. Geol. 82:523–545

    Google Scholar 

  • Nebel, M.L., Hutchinson, R.W., Zartman, R.E. (1991) Metamorphism and polygenesis of the Madem Lakos polymetallic sulfide deposit, Chalkidiki, Greece. Econ. Geol. 86:81–105

    Google Scholar 

  • Nebel, M.L., Hutchinson, R.W., Zartman, R.E. (1992) Metamorphism and polygenesis of the Madem Lakos polymetallic sulfide deposit, Chalkidiki, Greece a reply. Econ. Geol. 87:1187–1190

    Google Scholar 

  • Nicolaou, M., Kokonis, I. (1980) Geology and development of Olympias mine, Eastern Chalkidiki, Macedonia, Greece. In: Jones M.J. (ed.) Complex sulfide ores, London Inst. Mining Metallurgy, pp. 260–270

  • Ohmoto, H., Rye, R.O. (1970) The Bluebell mine, British Columbia, mineralogy, paragenesis, fluid inclusions, and the isotopes of hydrogen, oxygen, and carbon. Econ. Geol. 65:417–437

    Google Scholar 

  • Pichavant, M., Ramboz, C., Weisbrod, A. (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. I. Phase equilibria analysis a theoretical and geometrical approach. Chem. Geol. 37:1–27

    Article  Google Scholar 

  • Potter, R.W., II., Brown, D.L. (1977) The volumetric properties of aqueous sodium chloride solutions from 0 °C to 500 °C at pressures up to 2000 bar based on a regression of available data in the literature. US Geol. Survey Bull. 1421-C, 36 pp

  • Potter, R.W., II., Clynne, M.A., Brown, D.L. (1978) Freezing point depression of aqueous sodium chloride solutions. Econ. Geol. 73:284–285

    Google Scholar 

  • Poty, B., Leroy, J., Jachimowicz, L. (1976) Un nouvel appareil pour la mesure de temperatures sous le microscope: I: installation de microthermometrie Chaixmeca. Bull. Mineral. 99:182–186

    Google Scholar 

  • Ramboz, C., Pichavant, M., Weisbrod, A. (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data in terms of immiscibility. Chem. Geol. 37:29–48

    Article  Google Scholar 

  • Reed, M.H., Spycher, N.F. (1985) Boiling, cooling and oxidation in epithermal systems: A numerical modeling approach. In: Berger, B.R., Bethke, P.M. (eds.) Geology and geochemistry of epithermal systems, Reviews in Economic Geology 2:249–272

  • Robert, F., Kelly, W.C. (1987) Ore-forming fluids in Archean goldbearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol. 82:1464–1482

    Google Scholar 

  • Roedder, E. (1984) Fluid inclusions. Mineral. Soc. Am., Reviews in Mineralogy 12:644 pp

  • Sawkins, F.J. (1964) Lead-zinc ore deposition in the light of fluid inclusions, Providencia mine, Zacatecas, Mexico. Econ. Geol. 59:883–919

    Google Scholar 

  • Shelton, K.L. (1983) Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: a fluid inclusion and stable isotope study of Mines Gaspe, Quebec. Econ. Geol. 78:387–421

    Google Scholar 

  • Shepherd, T.J., Rankin, A.H., Alderton, D.H.M. (1985) A practical guide to fluid inclusion studies. In: Shepherd, T.J., Rankin, A.H., Alderton, D.H.M. (eds.). Blackie, New York

    Google Scholar 

  • Simone, I.S. (1951) Geology and ore deposits of the Zimapan mining district, Mexico. Unpub. Ph.D. Thesis, Stanford University, 237 PP

  • So, C., Yun, S., Koh, Y. (1993) Mineralogie, fluid inclusion, and stable isotope evidence for the genesis of carbonate-hosted PbZn(-Ag) orebodies of the Taebaek deposit, Republic of Korea. Econ. Geol. 88:855–872

    Google Scholar 

  • Sourirajan, S., Kennedy, G.S. (1962) The system H2O-NaCl at elevated temperatures and pressures. Am. J. Sci. 260:115–141

    Google Scholar 

  • Surles, T.L. (1978) Chemical and thermal variations accompanying formation of garnet skarns near Patogonia, Arizona. Unpub. M.Sc. Thesis, University of Arizona, 54 pp

  • Trommsdorf, V., Skippen, G. (1986) Vapor loss (“Boiling”) as a mechanism for fluid evolution in metamorphic rocks. Contrib. Mineral. Petrol. 94:317–322

    Google Scholar 

  • Urusova, M.A. (1975) Phase equilibria and thermodynamic characteristics of solutions in the system H2O-NaCl and NaOH-H2O at 350–550 °C. Geochem. Int. 11:944–950

    Google Scholar 

  • Woods, T.L., Roedder, E., Bethke, P.M. (1982) Fluid inclusion data on samples from Creede, Colorado, in relation to mineral para genesis. US Geol. Survey Open-File Rept. 82-313, 77 pp

  • Weast, R.C. (1977) CRC Handbook of chemistry and physics. CRC Press, Cleveland, Ohio

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilias, S.P., Kalogeropoulos, S.I. & Konnerup-Madsen, J. Fluid inclusion evidence for the physicochemical conditions of sulfide deposition in the Olympias carbonate-hosted Pb-Zn(Au, Ag) sulfide ore deposit, E. Chalkidiki peninsula, N. Greece. Mineral. Deposita 31, 394–406 (1996). https://doi.org/10.1007/BF00189187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189187

Keywords

Navigation