Skip to main content
Log in

Tracer imaging in lung cancer

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Lung cancer is the leading cause of death from cancer in males. Adequate staging is essential if proper treatment is to be administered. Current morphological imaging modalities are confronted with problems in the staging of lung cancer, in the evaluation of treatment response, and in establishing whether a residual mass is due to fibrosis, residual tumors or local recurrence. Nuclear medicine imaging techniques have advanced from planar gallium-67 citrate scans in the 1970s to multihead-detector single-photon emission tomography for 67Ga, Thallium-201 chloride, technetium-99m SestaMIBI, monoclonal antibodies, and octreotide compounds. Results of positron emission tomography (PET) with fluorine-18 deoxglucose or carbon-11 methionine are very promising. PET units are now employed in centers all over the world and the recently introduced whole-body PET units will be ideal for the correct staging of malignant diseases. The current status of various nuclear medicine imaging procedures is reviewed. The problems and advantages of each scintigraphic procedure are discussed. It appears that many of the problems that confront morphological imaging will be solved by nuclear medicine techniques in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silverberg E, Boring CC, Squires TS. Cancer statistics. 1990. CA 1990;40: 9–26.

    Google Scholar 

  2. American Cancer Society. Cancer facts and figures, 1993. Atlanta: American Cancer Society, 1993.

    Google Scholar 

  3. Hajerie TP, Kim EE. The role of nuclear imaging in the evaluation of lung cancer. In: Luken MK, ed. Current practices in nuclear medicine: pulmonary nuclear medicine. Norwalk, Conn: Appleton & Lange;1987: 291–304.

    Google Scholar 

  4. Mountain CF. Biologic, physiologic and technical determinants in surgical therapy for lung cancer. In: Strauss MJ, ed. Lung cancer — clinical diagnosis and treatment. New York: Grune & Stratton;1977: 185–198.

    Google Scholar 

  5. Bekerman C, Caride VJ, Hoffer PB, Boles CA. Noninvasive staging of lung cancer. Radiol Clin North Am 1990;28: 497–510.

    Google Scholar 

  6. Jabuson DH, Einhorn LH, Bartolucci A, et al. Thoracic radiotherapy does not prolong survival in patients with locally advanced, unresectable non-small cell lung cancer. Ann Intern Med 1990;113: 33–38.

    Google Scholar 

  7. Perez CA, Pajok TF, Rubin P, et al. Long term observations of the patterns of failure or patients with unresectable non-oat cell carcinoma of the lung treated with definitive radiotherapy. Cancer 1987;59: 1874–1881.

    Google Scholar 

  8. Goldberg EM. Mediastinoscopy in assessment of lung cancer. In: Strauss MF, ed. Lung cancer — clinical diagnosis and treatment. New York: Grune & Stratton;1977: 113–128.

    Google Scholar 

  9. Brown LG. A survey of image registration techniques. ACM Computing Surveys 24: 325–376.

  10. Pelizzari CA, Chen GTY, Spelbring DR, et al. Accurate three dimensional registration of CT, PET and/or MR images of the brain. J Comput Assist Tomogr 1989;13: 20–26.

    Google Scholar 

  11. Kramer EL, Noz ME. CT-SPELT fusion for analysis of radiolabeled antibodies: applications in gastrointestinal and lung carcinoma. Nucl Med Biol 1991;18: 27–42.

    Google Scholar 

  12. Lumbraser J, Montravers F, Ricard M, Di Paola M, Di Paola R, Parmentier C. Digital superimposition of CT and positive tumor tracers SPELT: phantom study and clinical applications [abstract]. Eur J Nucl Med 1991;18: 682.

    Google Scholar 

  13. Edwards CL, Hayes RL. Tumor scanning with Ga citrate. J Nucl Med 1969;10: 103–105.

    Google Scholar 

  14. Hoffer PB, Bekerman C, Henkin RE, eds. Ga-67 imaging. Part 3. Neoplastic diseases. New York: Wiley, 1978.

    Google Scholar 

  15. Freeman LM, Blaufox MD. Ga-67 citrate. Semin Nucl Med 1978;3: 181–270.

    Google Scholar 

  16. Hoffer PB. Status of Ga-67 in tumor detection. J Nucl Med 1980;21: 394–398.

    Google Scholar 

  17. Bekerman C, Hoffer PB, Bitran JD. The role of Ga-67 in the clinical evaluation of cancer. Semin Nucl Med 1984;14: 296–323.

    Google Scholar 

  18. Hayes RL, Edwards CL. New applications of tumor localizing radiopharmaceuticals. In: Medical radioisotope scintigraphy 1972, Vol II. Vienna: IAEA;1973: 531–552.

    Google Scholar 

  19. Halpern S, Hagan P Ga-67 citrate imaging in neoplastic and inflammatory disease. In: Freeman LM, Weissman HS, eds. Nuclear medicine annual 1980. New York: Raven Press;1980: 219.

    Google Scholar 

  20. Hayes RL. The medical use of Ga radionuclides: a brief history with some comments. Semin Nucl Med 1978;9: 183–191.

    CAS  PubMed  Google Scholar 

  21. Bruner HD, Hayes RL, Perkinson JD. Preliminary data on Ga-67. Radiology 1973;61: 602–612.

    Google Scholar 

  22. Larson SM, Allen DR, Rasey JS, Grunbaum Z. Kinetics of binding of carrier-free Ga-67 to human transferrin. J Nucl Med 1978;19: 1245–1249.

    Google Scholar 

  23. Larson SM, Ragsey JS, Allen DR, Nelson NJ. A transferrinmediated uptake of Ga-67 by EMT-6 sarcoma. I. Studies in tissue culture. J Nucl Med 1979;20: 837–842.

    Google Scholar 

  24. Berry JP, Escaig F, Poupon MF, Galle P Localization of Ga in tumor cells. Electron microscopy, electron probe microanalysis and analytical ion microscopy. Int J Nucl Med Biol 1983;10: 199.

    Google Scholar 

  25. Swartzendruber DC, Nelson B, Hayes RL. Ga-67 localization in lysosomal-like granules of leukemic and nonleukemic murine tissues. J Natl Cancer Inst 1971;46: 941–952.

    Google Scholar 

  26. Chan SM, Hoffer PB, Marie N, Duray P. Inhibition of Ga-67 uptake by antihuman transferrin receptor monoclonal antibody [abstract]. J Nucl Med 1987;28: 603.

    Google Scholar 

  27. Larson SM, Milder MS, Johnston GS. Interpretation of the Ga-67 photoscan. J Nucl Med 1973;14: 208–214.

    Google Scholar 

  28. Hoffer PB. Ga: mechanisms. J Nucl Med 1980;21: 282–285.

    Google Scholar 

  29. Nelson B, Hayes RL, Edwards CL, Knesely RM, Andrews GA. Distribution of Ga in human tissues after intravenous administration. J Nucl Med 1972;13: 92–100.

    Google Scholar 

  30. Hayes RL, Edwards CL. The effect of stable scandium on red blood cells and on the retention and excretion of Ga-67 in humans. South Med J 1973;66: 1339–1340.

    Google Scholar 

  31. Hatmer RS, White DL. Gallium-67/stable gadolinium antagonism: MRI contrast agent markedly alters the normal biodistribution of gallium-67. J Nucl Med 1990;31: 1844–1846.

    Google Scholar 

  32. Fletcher JW, Herbig FK, Donalti RM. Ga-67 citrate distribution following whole-body irradiation or chemotherapy. Radiology 1975;117: 709–712.

    Google Scholar 

  33. Bradley WP, Alderson PO, Eckelman WC, Hamilton RG, Weiss JF. Decreased tumor uptake of Ga-67 in animals after whole-body irradiation. J Nucl Med 1978;19: 204–209.

    Google Scholar 

  34. Bekerman C, Pavel DG, Bitran J, Ryo UY, Pinsky S. The effects of inadvertent administration of antineoplastic agents prior to Ga-67 injection: concise communication. J Nucl Med 1984;25: 430–435.

    Google Scholar 

  35. Goldberg EM. Mediastinoscopy in assessment of lung cancer. In: Strauss MJ, ed. Lung cancer — clinical diagnosis and treatment. New York: Grune & Stratton;1977: 113–128.

    Google Scholar 

  36. James EC, Ellwood RA. Mediastinoscopy and mediastinal roentgenology. Ann Thorac Surg 1974;18: 531.

    Google Scholar 

  37. Carlens E. Mediastinoscopy: a method for inspection and tissue biopsy in the superior mediastinum. Dis Chest 1959;36: 343.

    Google Scholar 

  38. Hinson KFW. The spread of carcinoma of the lung. In: Bigual J, ed. Carcinoma of the lung, vol 1. Edinburgh: Livingstone;1958: 130.

    Google Scholar 

  39. Hutchinson C, Mills N. The selection of patients with bronchogenic carcinoma for mediastinoscopy. J Thorac Cardiovasc Surg 1976;71:768.

    Google Scholar 

  40. Sealy WC. Mediastinoscopy. Ann Thorac Surg 1974;18: 433.

    Google Scholar 

  41. Pearson FG. An evaluation of mediastinoscopy in the management of presumably operable bronchial carcinoma. J Thorac Cardiovasc Surg 1968;55: 617.

    Google Scholar 

  42. Trinkle JK, Bryant LR, Hiller AJ. Mediastinoscopy: experience with 300 consecutive cases. J Thorac Cardiovasc Surg 1970;60: 297–300.

    Google Scholar 

  43. Alazraki NP. Usefulness of gallium imaging in the evaluation of lung cancer. Crit Rev Diagn Imaging 1980;13: 249–267.

    Google Scholar 

  44. Alazraki NP, Ramsdell JW, Taylor A, Friedman PJ, Peters RM, Tisi GM. Reliability of gallium scan, chest radiography compared to mediastinoscopy for evaluating mediastinal spread in lung cancer. Am Rev Respir Dis 1978;117: 415–420.

    Google Scholar 

  45. osburg RG, Hopkins GB, Kan MK. Evaluation of the mediastinum by Ga-67 scintigraphy in lung cancer. J Thorac Cardiovasc Surg 1979;77:76.

    Google Scholar 

  46. Lunia SL, Ruckdeschel JC, McKneally MF. Noninvasive evaluation of mediastinal metastases in bronchogenic carcinoma: a prospective comparison of chest radiography and Ga-67 scanning. Cancer 1981;47: 672–679.

    Google Scholar 

  47. DeMeester TR, Golomb HM, Kirchner P, et al. The role ofGa-67 scanning in the clinical staging and preoperative evaluation of patients with carcinoma of the lung. Ann Thorac Surg 1979;18:451–459.

    Google Scholar 

  48. Neumann R, Merino M, Hoffer PB. Ga-67 in hilar and mediastinal staging of primary lung carcinomas. J Nucl Med 1980;21: 32.

    Google Scholar 

  49. Heitzman ET, Goldwin R, Proto AV. Radiologic analysis of the mediastinum utilizing computer tomography. Radiol Clin North Am 1977;15: 309.

    Google Scholar 

  50. Rossi NP, Corder MP, Young JA. Clinical staging of lymph node areas in lung cancer. Presented at World Conference on Lung Cancer. Hilton Head, S.C., 1978.

  51. Hirleman MT, Yiu-Chiu VS, Chin LC. The resectability of primary lung carcinoma: a diagnostic staging review. CT: J Comput Tomogr 1980;4: 146.

    Google Scholar 

  52. Larson SM, Milders MS, Johnston GS. Tumor-seeking radiopharmaceuticals. Gallium-67. In: Subramanian G, Rhodes BA, Cooper JF, eds. Radiopharmaceuticals. New York: Society of Nuclear Medicine; 1975: 413.

    Google Scholar 

  53. Teates CD, Bray ST, Williamson BRJ. Tumor detection with Ga-67 citrate: a literature survey (1970–1978). Clin Nucl Med 1978;12: 456–460.

    PubMed  Google Scholar 

  54. Muhe von E. Scintigraphic demonstration of bronchial carcinoma using Ga-67 citrate. Thorax Chir 1971;10: 440.

    Google Scholar 

  55. Ragheb A, El-Gazzar AH, Abdel-Dayem HM, et al. Comparison between planar T1–201, Ga-67, chest x-ray and x-ray CT in inoperable non-small cell lung cancer [abstract]. Eur J Nucl Med 1993;20: 838.

    Google Scholar 

  56. Hjelms E, Dyrbye M. Ga-67 scintigraphy in malignant lesions of the lung. Scand J Respir Dis 1974;55: 1–4.

    Google Scholar 

  57. Ito Y, Okuyama S, Awano T. Diagnostic evaluation of Ga-67 scanning in lung cancer and other diseases. Radiology 1971;101: 355–362.

    Google Scholar 

  58. DeLand FM, Sauerbrunn BJL, Boyd C. Ga-67 citrate in untreated primary lung cancer: preliminary report of a cooperative group. J Nucl Med 1974;15: 408–411.

    Google Scholar 

  59. Littenberg RL, Alazraki NP, Taketa RM. A clinical evaluation of Ga-67 citrate scanning. Surg Gynecol Obstet 1973; 137: 424–430.

    Google Scholar 

  60. Higashi T, Nakayama Y, Murata A. Clinical evaluation of Ga-67 citrate scanning. J Nucl Med 1972; 13: 196–201.

    Google Scholar 

  61. Higashi T, Wakao H, Nakamura A. Quantitative Ga-67 scanning for predictive value in primary lung carcinoma. J Nucl Med 1980; 21: 628–632.

    Google Scholar 

  62. Langhammer H, Glaubitt G, Grebe SF. Ga-67 for tumor scanning. J Nucl Med 1972; 13: 25–30.

    Google Scholar 

  63. Kempken K, Langhammer H, Hor G. Szintigraphische und klinisch-experimentelle Untersuchungen mit Ga-67 an 142 Bronchialkarzinomen. J Nucl Med 1978; 20: 47.

    Google Scholar 

  64. Van der Schoot JB, Gruen AS, DeJong J. Ga-67 scintigraphy in lung diseases. Thorax 1976; 27: 543–546.

    Google Scholar 

  65. Thesingh CW, Driessen OMJ, Daems WT, et al. Accumulation and localization of Ga-67 in various types of primary lung carcinoma. J Nucl Med 1978; 19: 28–30.

    Google Scholar 

  66. Richman SD, Levenson SM, Bunn PA, Flinn GS, Johnston GS, De Vita VT. 67Ga accumulation in pulmonary lesions associated with bleomycin toxicity. Cancer 1975; 36: 1966–1972.

    Google Scholar 

  67. Sostman HD, Putman CE, Gamsu G. Diagnosis of chemotherapy lung. Am J Roentgenol 1981; 136: 33–40.

    Google Scholar 

  68. MacMahon H, Bekerman C. The diagnostic significance of gallium lung uptake in patients with normal chest radiographs. Radiology 1978; 127: 189–193.

    Google Scholar 

  69. Van der Schoot JB, Groen AS, Jong J. Gallium-67 scintigraphy in lung diseases. Thorax 1972; 27: 543–546.

    Google Scholar 

  70. Kataoka M, Kawamura M, Itoh H, Hamamoto K. Ga-67 citrate scintigraphy for the early detection of radiation pneumonitis. Clin Nucl Med 1992; 17: 27–31.

    Google Scholar 

  71. Gehring PJ, Hammand PB. The interrelationship between thallium and potassium in animals. J Pharmacol Exp Ther 1967; 155:187–201.

    Google Scholar 

  72. Lebowitz E, Greene MW, Greene R, et al. Thallium-201 for medical use. I. J Nucl Med 1975; 16: 151–155.

    Google Scholar 

  73. Bradley-Moore PR, Lebowitz E, Greene MW, Atkins HL, Ansari AN. Thallium-201 for medical use. II. Biologic behavior. J Nucl Med 1975; 16: 156–160.

    Google Scholar 

  74. Wallner KE, Galieich JH, Malkin MG, Arbit E, Krol G, Rosenblum MK. Inability of computed tomography appearance of recurrent malignant astrocytoma to predict survival following re-operation. J Clin Oncol 1989; 7: 1492–1496.

    Google Scholar 

  75. Mullins LJ, More RD. The movement of thallium ions in muscle. J Gen Physiol 1960; 43: 759–773.

    Google Scholar 

  76. Britten JS, Blamk M. Thallium activation of the (Na+-K+) activated ATPase of rabbit kidney. Biochem Biophys Acta 1968; 159: 160–166.

    Google Scholar 

  77. Sessler MJ, Geck P, Maul FD, et al. New aspects of cellular T1–201 uptake: T+NA+-2CL- Cotransport is the central mechanism of ion uptake. Nucl Med 1986; 25: 24–27.

    Google Scholar 

  78. Muranake A. Accumulation of radioisotopes with tumor affinity. II. Comparison of the tumor accumulation of Ga-67 citrate and thallium-201 chloride in vitro. Acta Med Okayama 1981; 35: 85–101.

    Google Scholar 

  79. Sehweil AM, McKillop JH, Milroy R, et al. Mechanism of T1–201 uptake in tumors. Eur J Nucl Med 1989; 15: 376–379.

    Google Scholar 

  80. Ando A, Ando I, Katayama M, et al. Biodistribution of T1–201 in tumor bearing animals and inflammatory lesions induced animals. Eur J Nucl Med 1987; 12: 567–572.

    Google Scholar 

  81. Venuta S, Ferraiuolo R, Morrone G, et al. The uptake of Tl-201 in normal and transformed thyroid cell lines. J Nucl Med Allied Sci 1979; 23: 163–166.

    Google Scholar 

  82. Ando A, Ando I, Sanada S, et al. Study of the distribution of tumor affinity metal compounds and alkaline metal compounds in the tumor tissues by macroautoradiography. Int J Nucl Med Biol 1984; 11: 195–201.

    Google Scholar 

  83. Ando A, Ando I, Sanada S, et al. Tumor and liver uptake models of Ga-67 citrate. Eur J Nucl Med 1985; 10: 262–268.

    Google Scholar 

  84. Waxman AD. Thallium-201 in nuclear oncology. Nucl Med Annl. New York: Raven Press; 1991: 193–209.

    Google Scholar 

  85. Caluser C, Macapinlac H, Healy T, et al. The relationship between thallium uptake, blood flow and blood pool activity in bone and soft tissue tumors. Clin Nucl Med 1992; 17: 565–571.

    Google Scholar 

  86. Sehweil A, McKillop JH, Ziada G, Al-Sayed M, Abdel-Dayem H, Omar YT. The optimum time for tumor imaging with thallium-201. Eur J Nucl Med 1988; 13: 527–529.

    Google Scholar 

  87. Holman BL, Tumeh SS. Single-photon emission computed tomography (SPECT): applications and potential. JAMA 1990; 263: 561–564.

    Google Scholar 

  88. Kaplan WD, Takuovian T, Morris CL, et al. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 1987; 28: 47–52.

    Google Scholar 

  89. Editorial. Systemic evaluation of primary brain tumors. J Nucl Med 1990; 31: 969–971.

    Google Scholar 

  90. Cox PH, Belfer AJ, Van der Pompe WB. Thallium 201 chloride in tumors, a possible complication in heart scintigraphy. Br J Radiol 1976; 49: 767–768.

    Google Scholar 

  91. Tagawa T, Yui N, Koakutsu M, et al. Two cases of adenocarcinoma of the lung in which thallium-201 gave a better delineation of metastatic lesions than gallium-67. Clin Nucl Med 1989; 14: 197–201.

    Google Scholar 

  92. Salvatore M, Carratu L, Porta E. Thallium-201 as a positive indicator for lung neoplasms. Preliminary experiences. Radiology 1976; 121: 487–488.

    Google Scholar 

  93. Basara BE, Wallner RJ, Hakki AH, Iskandrian AS. Extracardiac accumulation of thallium-201 in pulmonary carcinoma. Am J Cardiol 1984; 53: 358–359.

    Google Scholar 

  94. Eisenberg B, Vechik MG, DeVries DR Thallium-201 chloride uptake in a lung tumor during a routine stress thallium examination. Clin Nucl Med 1988; 13: 214–215.

    Google Scholar 

  95. Klier S, Heo J, Iskandrian AS. Massive extracardiac thallium accumulation in pulmonary carcinoma [letter]. Clin Nucl Med 1988; 93: 672.

    Google Scholar 

  96. Sehweil AM. An evaluation of thallium-201 as a tumor imaging agent. A thesis presented for the degree of PhD, Glasgow University, 1988.

  97. Waxman AD, Goldsmith WS, Grief PM, et al. Differentiation of tumor versus sarcoidosis using T1–201 in patients with hilar and mediastinal adenopathy [abstract]. J Nucl Med 1987; 28: 561.

    Google Scholar 

  98. Mutsaerts DNGM, Go TL, Verzijlbergen JF, Bandt J, Dijkman JH, Pauwels EKJ. Planar thallium-201 scintigraphy in patients with intrathoracic lesions [abstract]. J Nucl Med 1990; 31: 535.

    Google Scholar 

  99. Tonami N. Tissue characterization of suspected malignant pulmonary lesions with thallium-201 SPECT [abstract]. J Nucl Med 1990; 31: 535.

    Google Scholar 

  100. Tonami N, Shuke N, Yokoyama K, Seki H, Takayama T, Kinuya S, Nakajima K, Aburano T, Hisada K, Watanabe Y. Thallium-201 single photon emission computed tomography in the evaluation of suspected lung cancer [abstract]. J Nucl Med 1989; 30: 997.

    Google Scholar 

  101. Hisada K, Tonami N, Miyamal T, et al. Clinical evaluation of tumor imaging with thallium-201 chloride. Radiology 1978; 129: 497–500.

    Google Scholar 

  102. Matsuno S, Tanabe M, Kawasaki Y, Satoh K, Urrutia AE, Ohkawa M, Maeda M. Effectiveness of planar image and single photon emission tomography of thallium-201 compared with gallium-67 in patients with primary lung cancer. Eur J Nucl Med 1992; 19: 86–95.

    Google Scholar 

  103. Tonami, Yokoyama K, Taki J, et al. Pre-operative assessment for mediastinal involvement of lung cancer using T1–201 SPECT. J Nucl Med 1991; 32: 961.

    Google Scholar 

  104. Namba R, Narabayasi J, Sueyosi K, et al. Thallium-201 single photon emission computed tomography in the evaluation of lung and mediastinal disease [abstract]. J Nucl Med 1993;34: 221P.

  105. Miyagawa M, Watanabe K, Shiode M, et al. Thallium-201 SPECT in the follow-up of patients with lung cancer during radiotherapy [abstract]. J Nucl Med 1993;34: 222P.

  106. Sehweil AM, McKillop JH, Milroy R, Sayed MA, Ziada G, Banham SW, Davidson KG, Ragib A, Omar YT, Abdel-Dayem HM. 201-T1 scintigraphy in the staging of lung cancer, breast cancer and lymphoma. Nucl Med Commun 1990; 11: 263–269.

    Google Scholar 

  107. Tagawa T, Suzuki A, Kato K, et al. Relation between T1–201 to gallium-67 uptake ratio and histological type in primary lung cancer. Eur J Cancer Clin Oncol 1985; 28: 925–930.

    Google Scholar 

  108. Kaplan WD, Southee ML, Annese MS, et al. Evaluating low and intermediate grade non-Hodgkin's lymphoma (NHL) with gallium-67 (Ga) and thallium-201 (Tl) imaging [abstract]. J Nucl Med 1990; 31: 793.

    Google Scholar 

  109. Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-SestaMIBI (double-phase study). J Nucl Med 1992; 33: 1801–1807.

    Google Scholar 

  110. Coakley AJ, Kettle AG, Wells CP, O'Doherty MJ, Collins REC. Tc-99m SestaMIBI, a new agent for parathyroid imaging. Nucl Med Commun 1989; 10: 791–794.

    Google Scholar 

  111. Piwnica-Worms D, Kronauge IF, Holman BC, Lister-James J, Davison A, Jones AG. Hexakis (carbomethoxy isopropyl isonitrile) technetium 1, a new myocardial perfusion agent; binding characteristics in cultured chick heart cells. J Nucl Med 1988; 29: 55–61.

    Google Scholar 

  112. Piwnica-Worms D, Chin ML, Croop JM, Kronauge JF. Enhancement of Tc-99m SestaMIBI accumulation in multidrug resistent (MDR) cells by cytotoxic drugs and MDR reversing agents [abstract]. J Nucl Med 1993;34: 140P.

  113. Hassan IM, Sehweil A, Constantinides C, et al. Uptake and kinetics of Tc-99m-hexakis 2-methoxy isobutyl isonitrile in benign and malignant lesions in the lungs. Clin Nucl Med 1989; 14: 333–340.

    Google Scholar 

  114. Aktolun C, Bayhan H, Celasun B, Kir MK. Unexpected uptake of lymph node hyperplasia of the mediastinum (Castleman's disease). Eur J Nucl Med 1991; 18: 856–859.

    Google Scholar 

  115. Muller ST, Reiner C, Paas M, et al. Tc-99m-MIBI and T1–201 uptake in bronchial carcinoma. J Nucl Med 1989; 30: 845.

    Google Scholar 

  116. Muller ST, Guth-Taugelides B, Creutzig H. Imaging of malignant tumors with Tc-99m-MIBI SPECT. J Nucl Med 1987; 28: 562.

    Google Scholar 

  117. O'Tuama LA, Packard AB, Treves ST. SPECT imaging of paediatric brain tumor with hexakis (methoxyisobutyl isonitrile) technetium (1). J Nucl Med 1990; 31: 2040–2041.

    Google Scholar 

  118. Caner B, Kitapci M, Anas T, Erbengi G, Ugur O, Bekdik C. Increased accumulation of hexakis (2-methoxyisobutyl isonitrile) technetium (1) in osteosarcoma and its metastatic lymph nodes. J Nucl Med 1991; 32: 1977–1978.

    Google Scholar 

  119. Scott AM, Kostakoglu L, O'Brien JP, Strauss DJ, Abdel-Dayem HM, Larson SM. Comparison of technetium-99m SestaMIBI and thallium-201 uptake in primary thyroid lymphoma. J Nucl Med 1992; 33: 1393–1395.

    Google Scholar 

  120. LeBouthiller G, Taillefer R, Lambert R, Bavaria G, Duranceau A, LaFountaine M, Pellerin K, Leveille J. Detection of primary lung cancer with Tc-99m SestamMIBI [abstract]. J Nucl Med 1993;24: 140P.

  121. Macapinlac H, Scott A, Caluser C, et al. Comparison of Tl-201 and Tc-99m 2-methoxyisobutyl isonitrile (MIBI) with MRI in the evaluation of recurrent brain tumors [abstract]. J Nucl Med 1992; 33: 867.

    Google Scholar 

  122. Guerrero TM, Hoffman EJ, Dahibom W et al. Characterization of a whole body imaging technique for PET. IEEE Trans Nucl Sci 1990; 37: 676–680.

    Google Scholar 

  123. Dahlbom M, Hoffman EJ, Hoh CK, et al. Evaluation of a positron emission tomography (PET) scanner for whole body imaging. J Nucl Med 1992; 33: 1191–1199.

    Google Scholar 

  124. Sokoloff L, Reiviech M, Kennedy C, et al. The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28: 897–916.

    CAS  PubMed  Google Scholar 

  125. Warburg O. The metabolism of tumors. Constabel & Co.: London, 1930.

    Google Scholar 

  126. Gallagher BM, Fowler IS, Gutterson NI, et al. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxyglucose. J Nucl Med 1989; 19: 1154–1161.

    Google Scholar 

  127. Birnbaum MJ, Haspel HC, Rosen OM. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 1987; 235: 1495–1498.

    Google Scholar 

  128. Slater DW, Baldwin SA, Lienhard GE, et al. Proteins antigenically related to the human erythrocyte glucose transporter in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. Proc Natl Acad Sci 1982; 79: 1540–1544.

    Google Scholar 

  129. Hiraki Y, Rosen OM, Birnbaum MJ. Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem 1988; 27: 263.

    Google Scholar 

  130. Di Chiro G, De La Paz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [8F]fluorodeoxyglucose and positron emission tomography. Neurology 1982: 32: 1323–1329.

    Google Scholar 

  131. Di Chiro G, Oldfield E, Bairamian D, et al. Metabolic imaging of the brain stem and spinal cord: studies with positron emission tomography using 18F-2-deoxyglucose in normal and pathological cases. J Comput Assist Tomogr 1983: 7: 937–945.

    Google Scholar 

  132. Rhodes CG, Wise RJS, Gibbs JM, et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 1983; 14: 614–626.

    CAS  PubMed  Google Scholar 

  133. Patronas NJ, Brooks RA, De La Paz RL, et al. Glycolytic rate (PET) and contract enhancement (CT) in human cerebral gliomas. Am J Neuroradiol 1983: 4: 533–535.

    Google Scholar 

  134. DiChiro G, Brooks RA, Patronas NJ, et al. Issues in the in vivo measurements of glucose metabolism of human central nervous system tumors. Ann Neurol 1984; 15: S138–146.

    Google Scholar 

  135. DiChiro G. Positron emission tomography using [18F]fluorodeoxyglucose in brain tumors. Invest Radiol 1987; 20: 360–371.

    Google Scholar 

  136. DiChiro G, Oldfield E, Wright DC, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. Am J Radiol 1988; 150: 189–197.

    Google Scholar 

  137. DiCbiro G, Brooks RA. PET-FDG of untreated and treated cerebral gliomas. J Nucl Med 1988; 29: 421–422.

    Google Scholar 

  138. Patronas NJ, Di Chiro GD, Kufta C, et al. Prediction of survival in glioma patients by PET. J Neurosurg 1986; 62: 816–822.

    Google Scholar 

  139. Alavi JB, Alavi A, Chawluk J, et al. Positron emission tomography in patients with glioma: a predictor of prognosis. Cancer 1988; 1074–1078.

  140. Ogawa T, Uemura K, Shishido F, et al. Changes of cerebral blood flow and oxygen and glucose metabolism following radiochemotherapy of glioma: a PET study. J Comput Assist Tomogr 1988; 12: 290–297.

    Google Scholar 

  141. Phillips PC, Dhawan V, Strother SC, et al. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study. Ann Neurol 1987; 21: 59–63.

    Google Scholar 

  142. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991; 32: 623–664.

    Google Scholar 

  143. Hawkins PA, Hoh C, Dahlbom M, et al. PET cancer evaluations with FDG. J Nucl Med 1991; 32: 1555–1558.

    Google Scholar 

  144. Ott RJ. The applications of positron emission tomography to oncology. Br J Cancer 1991; 63: 343–345.

    Google Scholar 

  145. Hawkins RA, Hoh C, Glaspy JA, et al. Role of PET in oncology and other whole body applications. Semin Nucl Med 1992; 22: 268–284.

    Google Scholar 

  146. Nolop KP, Rhodes CG, Burdin LH, et al. Glucose utilization in vivo by human pulmonary neoplasms. Cancer 1987; 60: 2681–1689.

    Google Scholar 

  147. Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med 1990; 31: 1927–1933.

    Google Scholar 

  148. Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of solitary pulmonary nodules with positron emission tomography using [11C]apslaps aus-methionine. J Comput Assist Tomogr 1988; 12: 794–796.

    Google Scholar 

  149. Gupta NC, Frank AR, Dewan NA, et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-apsdaps aus-glucose. Radiology 1992; 184: 441–444.

    Google Scholar 

  150. Fujiwara T, Matsuzawa T, Kubota K, et al. Relationship between histologic type of primary lung cancer and carbon-ll-apslaps aus-methionine uptake with positron emission tomography. J Nucl Med 1989; 30: 33–37.

    Google Scholar 

  151. Kubota K, Matsuzawa T, Fujiwara T, et al. Comparison of C-11 methionine and F-18 fluorodeoxyglucose for the differential diagnosis of lung tumor [abstract]. J Nucl Med 1989; 30: 788–789.

    Google Scholar 

  152. Kubota K, Yamada S, Ishhiwata K, et al. Evaluation of the treatment response of lung cancer with positron emission tomography and apslaps aus-[methyl-11-C]methionine: a preliminary study. Eur J Nucl Med 1993; 20: 495–501.

    Google Scholar 

  153. Abe Y, Matsuzawa T, Fujiwara T, et al. Clinical assessment of the therapeutic effects on cancer, 18F-2-deoxy-apsdaps aus-glucose and positron emission tomography: preliminary study of lung cancer. Int J Radiat Oncol Biol Phys 1990; 19: 1005–1010.

    Google Scholar 

  154. Engenhart R, Kimming BN, Strauss LG, et al. Therapy monitoring of presacral recurrences after high-dose irradiation: value of PET, CT, CEA and pain score. Strahlenther Onkol 1992; 168: 203–212.

    Google Scholar 

  155. Ichiya Y, Kuwabara Y, Otsuka M, et al. Assessment of response to cancer therapy using fluorine-l8-fluorodeoxyglucose and positron emission tomography. J Nucl Med 1991; 32: 1655–1660.

    Google Scholar 

  156. Kubota K, Ishiwata K, Kubota R, et al. Tracer feasibility for monitoring of tumor radiotherapy: quadruple-tracer study with fluorine-l8-fluordeoxyglucose or fluorine-18 apslaps aus-methyl-14C methionine, 6-3H thymidine and gallium-67. J Nucl Med 1991; 21: 2118–2123.

    Google Scholar 

  157. Lowe VI, Hoffman JM, Patz EF, Paine S, Burrows P, Coleman RE. Differentiation of benign and malignant pulmonary opacities with PET-FDG. J Nucl Med 1993;34:21P.

    Google Scholar 

  158. Gupta N, Dewan N, Frank A, Milliard J, Scott W. Pre-surgical evaluation of patients with suspected malignant solitary pulmonary nodules (SPN) using PET-FDG imaging [abstract]. J Nucl Med 1993;34:20P.

    Google Scholar 

  159. Knoop MV, Bischoff H, Ostertag H, et a1. Clinical applications of FDG-PET for staging of bronchogenic carcinoma. J Nucl Med 1993;34:21P.

  160. Miyagawa H, Arai T, Inagaki K, Morita T, Yano M, Hara T. Detection of mediastinal lymph node metastasis from lung cancer with positron emission tomography (PET) using 11C-methionine. Nippon Kyobu Geka Gakkai Zasshi 1992; 40: 2125–2130.

    Google Scholar 

  161. Patz EF, Lowe VJ, Hoffman JM, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993; 183: 487–490.

    Google Scholar 

  162. Strauss LG, Conti PS. The application of PET in clinical oncology. J Nucl Med 1991; 32: 623–648.

    Google Scholar 

  163. Kubota K, Yamada S, Ishiwata K, Ito M, Ido T. Positron emission tomography for treatment evaluation and recurrence detection compared with CT in long-term follow-up cases of lung cancer. Clin Nucl Med 1992; 17: 877–881.

    Google Scholar 

  164. Gupta NC, Boman BM, Frank AR, et al. Utility of PET-FDG imaging in treatment planning and monitoring of lung tumors. Radiology 1991; 181: 152.

    Google Scholar 

  165. Abe Y, Matsuzawa T, Fujiwara T, et al. Clinical assessment of therapeutic effects on cancer using 18F-2-fluoro-2-deoxyapsdaps aus-glucose and positron emission tomography: preliminary study of lung cancer. Int J Radiat Oncol Biol Phys 1990; 19: 1005–1010.

    Google Scholar 

  166. Korkmaz M, Wong F, Podoloff DA, et al. PET differentiation of residual or recurrent chest tumors from posttherapy changes [abstract]. J Nucl Med 1993;34: 42P.

  167. Kim EE, Korkmaz M, Wong E, et al. Methionine PET in the differentiation of residual or recurrent tumor from posttreatment changes [abstract]. J Nucl Med 1993;34: 55P.

  168. Steel CG. Cell population kinetics of tumors in experimental animals. In: Steel CG ed. Growth kinetics of tumors. Oxford: Clarendon Press; 1977: 146–184.

    Google Scholar 

  169. Kubota R, Yamada S, Kubota K, et al. Intratumoral distribution of fluorine-l8-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microamoradiography. J Nucl Med 1992; 33: 1972–1980.

    CAS  PubMed  Google Scholar 

  170. Ullrich RL, Casarett GW. Interrelationship between the early inflammatory response and subsequent fibrosis after radiation exposure. Radiat Res 1977; 72: 107–121.

    Google Scholar 

  171. Krishnamurthy S, Morris JF, Antonoie R, et al. Evaluation of primary lung cancer with indium III anticarcinoembryonic antigen (type ZCE-025) monoclonal antibody scintigraphy. Cancer 1990; 65:458–465.

    Google Scholar 

  172. Biggi A, Gianfranco B, Ferrigno D, et al. Detection of suspected primary lung cancer scintigraphy with indium III-anticarcinoembryonic antigen monoclonal antibodies (type FO23C5). J Nucl Med 1991; 32: 2064–2068.

    Google Scholar 

  173. Kalafonos HP, Sivolapenko GB, Courtenay-Luck NS, et al. Antibody guided targeting of non-small cell lung cancer using 111In-labeled HMFGI F(ab')5 fragments. Cancer Res 1988; 48: 1977–1984.

    Google Scholar 

  174. Bourget P, Dazord L, Desrues B, et al. Immunoscintigraphy of human lung squamous cell carcinoma using an iodine-131 labeled monoclonal antibody (Po66). Br J Cancer 1990; 61: 230–234.

    Google Scholar 

  175. Nelp WB, Griep RG, Salk D, et al. Staging of small cell cancer of the lung using Tc-99m labeled antibody (Fab). In: Haseman MK, ed. Frontiers of nuclear medicine: diagnostic uses of radiolabeled monoclonal antibodies. Washington, DC: American College of Nuclear Physicians; 1992: 15–20.

    Google Scholar 

  176. Abrams P, Fer M, Fabion C, et al. A new procedure for staging small cell lung cancer (SCLS): gamma camera imaging using a technetium-99m labeled monoclonal antibody Fab [abstract]. Am Soc Clin Oncol 1990; 9: A895.

    Google Scholar 

  177. Walker B, Balaban E, Cox J, et al. Staging of small cell carcinoma of the lung (SCCL): a comparison of a Tc-99m labeled monoclonal antibody (MAb) with “traditional” staging techniques [abstract]. Antibod Immunoconj Radiopharm 1991; 4: 51.

    Google Scholar 

  178. Sonin A, McCook B, Johnson D, et al. Technetium-99m labeled NR-LU-10 monoclonal antibody (MoAb) in assessing patients with small cell lung cancer (SCLS) [abstract]. J Nucl Med 1989; 30: 1749.

    Google Scholar 

  179. Salk D, Fer M, Faubion C, et al. Successful imaging of small cell carcinoma (SCC) with a radiolabeled monoclonal antibody [abstract]. Am Soc Clin Oncol 1989; 8: A957.

    Google Scholar 

  180. Powers T, Johnson D, Me Cook B, et al. Staging of carcinoma of the lung with Tc-99m-labeled NR-LU-10 monoclonal antibody [abstract]. Radiology 1989; 173: 418.

    Google Scholar 

  181. Abdel-Nabi H, Abrams P, Ackerhalt R, et al. Tc-99m-labeled monoclonal antibody imaging of small cell carcinoma of the lung. J Nucl Med 1989; 30: 818–819.

    Google Scholar 

  182. Balaban EP, Walker BS, Cox JV, et al. Radionuclide imaging of bone marrow metastases with a Tc-99m-labeled monoclonal antibody to small cell lung carcinoma. Clin Nucl Med 1991; 16: 732–736.

    Google Scholar 

  183. Friedman S, Sullivan K, Salk D, et al. Staging non-small cell carcinoma of the lung using technetium-99m-labeled monoclonal antibodies. Hematol/Oncol Clin North Am 1991; 4: 1069–1078.

    Google Scholar 

  184. Stewart JR, Carey JA, Merrill WH, et al. Radiolabeled monoclonal antibody imaging in non-small cell lung cancer: initial clinical results and implications. Ann Thorac Surg (in press)

  185. Vasant JP, Johnson DH, O'Donnell DM, et al. Staging lung carcinoma with a Tc-99m labeled monoclonal antibody. Clin Nucl Med 1992; 17: 431–438.

    Google Scholar 

  186. Rusch V, Macapinlac H, Heelan R, et al. NR-LU-10 monoclonal antibody scanning: a helpful new adjunct to CT in evaluating non-small cell lung cancer. J Thorac Cardiovasc Surg 1993; 106: 200–204.

    Google Scholar 

  187. Divgi CR, Welt S, Kris M, et al. Phase I and imaging trial of indium-111-labeled anti epidermal growth factor receptor monclonal antibody 225 in patients with squamous lung carcinoma. J Natl Cancer Inst 1991; 83: 97–104.

    Google Scholar 

  188. Scott AM, Baselga J, Divgi CR, et al. Comparison of phase I trials of anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (Mab) 528 and 225 labelled with I-131 and In-111 [abstract]. J Nucl Med 1993;34: 215P.

  189. Wolf S, Weiden P, Breitz H, et al. Human antimouse antibody (HAMA) suppression with cyclosporin A (CSP) [abstract]. Antibody Immunoconj Radiopharm 1992; 5: 127.

    Google Scholar 

  190. Brazeau P. Somatostatin: a peptide with unexpected physiologic activities. Am J Med 1986; 81: 8013.

    Google Scholar 

  191. Reubi JC, Maurer R. Autoradiographic mapping of somatostatin receptors in the rat CNS and pituitary. Neuroscience 1985; 15: 1183–1193.

    Google Scholar 

  192. Patel YC, Amherdt M, Orci L. Quantitative electron microscopic autoradiography of insulin, glucagon and somatostatin binding sites on islets. Science 1982; 217: 1155–1156.

    Google Scholar 

  193. Pearse AGE, Polak JM, Heath CM. Polypeptide hormone production by “carcinoid” apudomas and their relevant cytochemistry. Virchows Arch [B] 1974; 16: 95–109.

    Google Scholar 

  194. Vanhagen PM, Krenning EP, Reubi JC, Mulder AH, Bakker WH, Oei HY, Lowenberg B, Lamberts SWJ. Somatostatin analogue scintigraphy of malignant lymphomas. Br J Haematol 1993; 83: 75–79.

    Google Scholar 

  195. Vanhagen PM, Krenning EP, Reubi JC, Kwekkeboom DJ, Oei HY, Mulder AH, Laissue I, Hoogsteded HC, Lamberts SWJ. Somatostatin analogue scintigraphy in granulomatous diseases.

  196. Krenning EP, Bakker WH, Kooij M, et al. Somatostatin receptor scintigraphy with [111In-DTPA-apsdaps aus-Phe1]-octreotide in man: metabolism, dosimetry and comparison with [123I-Tyr3]-octreotide. J Nucl Med. 1992; 33: 652–658.

    Google Scholar 

  197. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA. Concentration of oxygen dissolved in tissues at time of irradiation as a factor in radiotherapy. Br J Radiol 1953; 26: 638–648.

    Google Scholar 

  198. Moulder JE, Rockwell S. Tumor hypoxia, its impact on cancer therapy. Cancer Metastasis Rev 1987; 5: 313–341.

    Google Scholar 

  199. Chapman JD. Hypoxic sensitizers: implications for radiation therapy. N Engl J Med 1979; 301: 1429–1432.

    CAS  PubMed  Google Scholar 

  200. Chapman JD, Franko AJ, Sharplin J. A marker for hypoxic cells in tumors with potential clinical applicability. Br J Cancer 1981; 43: 546–550.

    CAS  PubMed  Google Scholar 

  201. Urtasun RC, Chapman JD, Raleigh JA, Franko AJ, Koch CJ. Binding of H-3-misondidazole to solid human tumors as a measure of tumor hypoxia. Int J Radiat Oncol Biol Phys 1986; 12: 1263–1267.

    Google Scholar 

  202. Chapman JD, Urtasun RC, Franko AJ, Raleigh JA, Meeker BE, McKinnon SA. The measurement of oxygenation status of individual tumors. In: Prediction of response in radiation therapy: the physical and biological basis. Am Assoc Phys Med Symp Proc, no. 7 (part 1);1989: 49–60.

  203. Koh WJ, Rasey IS, Evans ML, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole: a marker hypoxic myocardium. J Nucl Med 1992; 22: 199–212.

    Google Scholar 

  204. Shelton ME, Dence CS, Hwang D-R, Welch MJ, Bergmann SR. Myocardial kinetics of fluorine- l8-misonidazole: a marker of hypoxic myocardium. J Nucl Med 1989; 30: 351–358.

    Google Scholar 

  205. Mannan RH, Somayaju II, Lee J, Mercer JR, Chapman JD, Wiebe LI. Radioiodinated 1-(5-iodo-5-deoxy-β-apsdaps ausarabinofuranosy)2-nitromidazole (iodoazomycin arabinoside: IAZA): a novel marker of tissue hypoxia. J Nucl Med 1991: 32: 1764–1770.

    Google Scholar 

  206. Parliament MB, Chapman JD, Urtasun RC, et al. Non-invasive assessment of human tumor hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 1992: 65: 90–95.

    CAS  PubMed  Google Scholar 

  207. Suga K, Honna Y, Uchisako H, et al. Assessment of 99mTc-HMPAO tumor scintigraphy using VX-2 tumors implanted in a lower limb muscle of rabbits. Nucl Med Commun 1991; 12: 611–619.

    Google Scholar 

  208. Powell NP, McCready VR, Tait D, et al. Technetium-99m HMPAO and SPECT in the assessment of blood flow in human lung tumors. Br J Cancer 1989; 59: 135–141.

    Google Scholar 

  209. Groshar D, McEwan AJB, Parliament MB, Urkasern TC, Goldberg L, Hoskinson M, Mercer JR, Mannan RH, Wiebe I, Chapman D. Imaging tumor hypoxia and tumor perfusion. J Nucl Med 1993; 34: 885–888.

    Google Scholar 

  210. Stone CK, Mulnix T, Nickles RJ, et al. Myocardial kinetics of a putative hypoxic tissue marker, technetium-99m-labeled nitroimidazole (BMS-181321), after regional ischemia and reperfusion [abstract]. J Nucl Med 1993;34: 16P.

  211. Koh WJ, Rasey JS, Evans ML, Casciari JJ, Graham MM. Imaging of hypoxia and reoxygenation in human tumors with [F-18]fluoromisonazaole [abstract]. J Nucl Med 1993;34: 21P.

  212. Nowotnik DP, Cyr JE, Chan YW, Ramalingram K, Linder KE, Nunn AD. Separation of isomers of the Tc-nitroimidazole complexes TeOPnAL-1-2-nitro (BMS181321) and TcOPnAO-6-OMe-1-2-nitro [abstract]. J Nucl Med 1993;34: 18P.

  213. Hirsch FR, Hansen HH. Bone marrow involvement in small cell anaplastic carcinoma of the lung: prognostic and therapeutic aspects. Cancer 1980; 46: 205–211.

    Google Scholar 

  214. Hansen HH, Muggia, Selawry OS. Bone marrow examination in 100 consecutive patients with bronchogenic carcinoma. Lancet 1971; II: 443–445.

    Google Scholar 

  215. Editorial. Is bone marrow sampling necessary in patients with small cell lung cancer? Lancet 1987; I: 83.

    Google Scholar 

  216. Campling B, Quirt I, De Baer G, Feld R, Sheperd FA, Evan WK. Is bone marrow examination in small cell lung cancer really necessary? Ann Intern Med 1986; 105: 508–512.

    Google Scholar 

  217. Widding A, Stilbo I, Hansen SW, Hansen HH, Rossing N. Scintigraphy with monocolloid Tc-99m in patients with small cell lung cancer with special reference to bone marrow and hepatic metastases. Eur J Nucl Med 1990; 16: 717–719.

    Google Scholar 

  218. Perrin-Resche I, Bizais Y, Bribe T, Fiche M. How does iliac crest bone marrow biopsy compare with imaging in the detection of bone metastases in small cell cancer? Eur J Nucl Med 1993; 20: 420–425.

    Google Scholar 

  219. Zibrak JD, O'Donnell CR, Marton K. Indications for pulmonary function testing. Ann Intern Med 1990; 112: 763–771.

    Google Scholar 

  220. Putman JB Jr, Lammermeier DE, Colon R, McMurtey MJ, Ali MK, Roth JA. Predicted pulmonary function and survival after pneumonectomy for primary lung carcinoma. Ann Thorac Surg 1990; 49: 909–914.

    Google Scholar 

  221. Keagy BA, Schorlommer GR, Murray GF, Starek PIK, Wilcox BR. Correlation of preoperative pulmonary function testing with clinical course in patients after pneumonectomy. Ann Thorac Surg 1983; 36: 253–257.

    Google Scholar 

  222. Gass GD, Olsen GN. Preoperative pulmonary function testing to predict postoperative morbidity and mortality. Chest 1986; 89: 127–135.

    Google Scholar 

  223. Tisi GM. Preoperative identification and evaluation of the patient with lung disease. Med Clin North Am 1987; 71: 399–412.

    Google Scholar 

  224. Gaensler EA, Cugell DW, Lindgren J, Verstraeten JM, Smith SS, Strieder JW The role of pulmonary insufficiency in mortality and invalidism following surgery for pulmonary tuberculosis. J Thorac Surg 1955; 29: 163–185.

    Google Scholar 

  225. Thoren L. Post-operative pulmonary complications: observations on their prevention by means of physiotherapy. Acta Chir Scand 1954; 107: 193–205.

    Google Scholar 

  226. Mittman C. Assessment of operative risk in thoracic surgery. Am Rev Respir Dis 1961; 84: 197–207.

    Google Scholar 

  227. Tisi GM. Preoperative evaluation of pulmonary function: validity, indications and benefits. Am Rev Respir Dis 1979; 119: 293–310.

    Google Scholar 

  228. Mohr DN, Jett JR. Preoperative evaluation of pulmonary risk factors. J Gen Intern Med 1988; 3: 277–287.

    Google Scholar 

  229. Peters RM, Clauson JL, Tisi GM. Extending resectability for carcinoma of the lung in patients with impaired pulmonary function. Ann Thorac Surg 1978; 26: 250–259.

    Google Scholar 

  230. American College of Physicians. Preoperative pulmonary function testing. Ann Intern Med 1990; 112: 793–794.

    Google Scholar 

  231. Van Nostrand D, Kjelsberg MO, Humphrey EW. Preresectional evaluation of risk from pneumonectomy. Surg Gynecol Obstet 1968; 127: 306–312.

    Google Scholar 

  232. Larsen MC, Cliffton EE. The prognostic value of preoperative evaluation of patients undergoing thoracic surgery. Dis Chest 1965; 47: 589–594.

    Google Scholar 

  233. Neuhaus H, Cheniak NS. A bronchospirometric method of estimating the effect of pneumonectomy on the maximum breathing capacity. J Thorac Cardiovasc Surg 1968; 55: 144–148.

    Google Scholar 

  234. Kristenson S, Lindell SE, Svanberg L. Prediction of pulmonary function loss due to pneumonectomy using 133Xe-radiospirometry. Chest 1972; 62: 694–698.

    Google Scholar 

  235. Olsen ON, Block AJ, Tobias JA. Prediction of post-pneumonectomy pulmonary function using quantitative macroaggregated lung scanning. Chest 1974; 66: 13–16.

    Google Scholar 

  236. DeMeester TR, Van Heertum RL, Karas JR, Watson RL, Hansen JE. Preoperative evaluation with differential pulmonary function. Ann Thorac Surg 1974; 18: 61–70.

    Google Scholar 

  237. Olsen GN, Block AJ, Swenson EW, Castic JR, Wynne JW. Pulmonary function evaluation of lung resection candidate: a prospective study. Am Rev Respir Dis 1975; 111: 379–387.

    Google Scholar 

  238. Boyesn PG, Block AJ, Olsen GN, Moulder PV, Harris JO, Rawitscher RE. Prospective evaluation for pneumonectomy using the 99mtechnetium quantitative perfusion lung scan. Chest 1977; 72: 422–425.

    Google Scholar 

  239. Markos J, Mullan BP, Hillman DR, et al. Preoperative assessment as a predictor of mortality and morbidity after lung resection. Am Rev Respir Dis 1989; 139: 902–910.

    Google Scholar 

  240. Dunn WF, Scanlon PD. Preoperative pulmonary function testing for patients with lung cancer. Mayo Clin Proc 1993; 68: 371–377.

    Google Scholar 

  241. McCloud TC, Bourgouin PM, Greenberg RW, et al. Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology 1992; 182; 319–323.

    Google Scholar 

  242. Webb and Webb WR, Gatsonis CA, Zerhouni EA, et al. CT and MRI imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. Radiology 1991: 178; 705–713.

    Google Scholar 

  243. Marks L, Sontag M, Ray S, et al. Three dimensional SPECT lung perfusion scans in designing radiation beams and in predicting and assessing the physiologic consequences of thoracic irradiation. Int J Radiat Oncol Biol Phys (1992) 24 [Suppl 1]: 238.

    Google Scholar 

  244. Scott AM, Macapinlac H, Zhang J, et al. Clinical applications of fusion imaging in oncology. Nucl Med Biol (in press).

  245. Sgouros G, Chin S, Pentlow KS, et al. Three-dimensional dosimetry for radioimmunotherapy treatment planning. J Nucl Med 1993; 34: 1595–1601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Dayem, H.M., Scott, A., Macapinlac, H. et al. Tracer imaging in lung cancer. Eur J Nucl Med 21, 57–81 (1994). https://doi.org/10.1007/BF00182307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182307

Key words

Navigation