Skip to main content
Log in

The Bruhat order on symmetric varieties

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let G be a connected reductive linear algebraic group over an algebraically closed field of characteristic not 2. Let θ be an automorphism of order 2 of the algebraic group G. Denote by K the fixed point group of θ and by B a Borel group of G.

It is known that the number of double cosets BgK is finite. This paper gives a combinatorial description of the inclusion relations between the Zariski-closures of such double cosets. The description can be viewed as a generalization of Chevalley's description of the inclusion relations between the closures of double cosets BgB, which uses the Bruhat order of the corresponding Weyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borel, A., Linear Algebraic Groups, Benjamin, New York, 1969.

    Google Scholar 

  2. Borel, A. and Tits, J., ‘Compléments a l'article “Groupes réductifs”’, Publ. Math. I.H.E.S. 41 (1972), 253–276.

    Google Scholar 

  3. Bourbaki, N., Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.

    Google Scholar 

  4. Deligne, P. and Lusztig, G., ‘Representations of reductive groups over finite fields’, Ann. of Math. 103 (1976), 103–161.

    Google Scholar 

  5. Demazure, M., ‘Désingularisation des variétés de Schubert généralisées’, Ann. Ec. Norm. Sup. 6 (1974), 53–88.

    Google Scholar 

  6. Deodhar, V. V., ‘Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function’, Invent. Math. 39 (1977), 187–198.

    Google Scholar 

  7. Deodhar, V. V., ‘On some geometric aspects of Bruhat orderings, I. A finer decomposition of Bruhat cells’, Invent. Math. 79 (1985), 499–511.

    Google Scholar 

  8. Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978.

    Google Scholar 

  9. Helminck, A., ‘Tori invariant under an involutorial automorphism’ (to appear, Adv. in Math.).

  10. Kostant, B., ‘On the conjugacy of real Cartan subalgebras’, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 967–970.

    Google Scholar 

  11. Lusztig, G. and Vogan, D. A., Jr, ‘Singularities of closures of K-orbits on flag manifolds’, Invent. Math. 71 (1983), 365–379.

    Google Scholar 

  12. Matsuki, T., ‘The orbits of affine symmetric spaces under the action of a minimal parabolic subgroup’, J. Math. Soc. Japan 31 (1979), 331–357.

    Google Scholar 

  13. Richardson, R. W., ‘Orbits, invariants and representations associated to involutions of reductive groups’, Invent. Math. 66 (1982), 287–312.

    Google Scholar 

  14. Richardson, R. W., ‘Conjugacy classes of involutions in Coxeter groups’, Bull. Austral. Math. Soc. 26 (1982), 1–17.

    Google Scholar 

  15. Springer, T. A., ‘Some results on algebraic groups with involutions’, Advanced Studies in Pure Math., Vol. 6, pp. 525–543, Kinokuniya/North-Holland, 1985.

    Google Scholar 

  16. Springer, T. A., ‘The classification of involutions of simple algebraic groups’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 655–670.

    Google Scholar 

  17. Steinberg, R., ‘Endomorphisms of linear algebraic groups’, Mem. Amer. Math. Soc. 80 (1968).

  18. Steinberg, R., ‘Conjugacy classes in algebraic groups’, Lecture Notes in Math. 366, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

    Google Scholar 

  19. Vogan, D. A. Jr, ‘Irreducible characters of semisimple Lie groups III. Proof of the Kazhdan-Lusztig conjecture in the integral case’, Invent. Math. 71 (1983), 381–417.

    Google Scholar 

  20. Vust, T., ‘Opération de groupes réductifs dans un type de cônes presque homogènes’, Bull. Math. Soc. France 102 (1974), 317–334.

    Google Scholar 

  21. Warner, G., Harmonic Analysis on Semisimple Lie Groups, I, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To Jacques Tits on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, R.W., Springer, T.A. The Bruhat order on symmetric varieties. Geom Dedicata 35, 389–436 (1990). https://doi.org/10.1007/BF00147354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00147354

Keywords

Navigation