Skip to main content
Log in

Fitting Bayesian multiple random effects models

  • Papers
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Bayesian random effects models may be fitted using Gibbs sampling, but the Gibbs sampler can be slow mixing due to what might be regarded as lack of model identifiability. This slow mixing substantially increases the number of iterations required during Gibbs sampling. We present an analysis of data on immunity after Rubella vaccinations which results in a slow-mixing Gibbs sampler. We show that this problem of slow mixing can be resolved by transforming the random effects and then, if desired, expressing their joint prior distribution as a sequence of univariate conditional distributions. The resulting analysis shows that the decline in antibodies after Rubella vaccination is relatively shallow compared to the decline in antibodies which has been shown after Hepatitis B vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besag, J. and Green, P. J. (1993) Spatial statistics and Bayesian computation, Journal of the Royal Statistical Society B, 55, 25–37.

    Google Scholar 

  • Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9–25.

    Google Scholar 

  • Casella, G. and George, E. I. (1992) Explaining the Gibbs sampler, The American Statistician, 46, 167–74.

    Google Scholar 

  • Coursaget, P., Yvonnet, P., Gilks, W. R., Wang, C. C., Day, N. E., Chiron, J-P. and Diop-Mar, I. (1991) Scheduling of revaccinations against Hepatitis B virus, The Lancet, 337, 1180–83.

    Google Scholar 

  • Dellaportas, P. and Smith, A. F. M. (1993) Bayesian inference for generalised linear and proportional hazards models via Gibbs sampling, Applied Statistics, 42, 443–59.

    Google Scholar 

  • Gelfand, A. E. and Smith, A. F. M. (1990) Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398–409.

    Google Scholar 

  • Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1994) Efficient parametrizations for normal linear mixed models, Technical Report 94-01, Department of Statistics, University of Connecticut.

  • Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–41.

    Google Scholar 

  • Gilks, W. R. (1992) Derivative-free adaptive rejection sampling for Gibbs sampling. In J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (eds) Bayesian Statistics 4 pp. 641–49, Oxford: University Press.

    Google Scholar 

  • Gilks, W. R. and Wild, P. (1992) Adaptive rejection sampling for Gibbs sampling, Applied Statistics, 41, 337–48.

    Google Scholar 

  • Gilks, W. R., Clayton, D. G., Spiegelhalter, D. J., Best, N. G., McNeil, A. J., Sharples, L. D. and Kirby, A. J. (1993a) Modelling complexity: applications of Gibbs sampling in medicine, Journal of the Royal Statistical Society B, 55, 39–52.

    Google Scholar 

  • Gilks, W. R., Wang, C. C., Coursaget, P. and Yvonnet, B. (1993b) Random effects models for longitudinal data using Gibbs sampling, Biometrics, 49, 441–53.

    Google Scholar 

  • Gilks, W. R., Thomas, A. and Spiegelhalter, D. J. (1994) A language and program for complex Bayesian modelling. The Statistician, 43, 169–77.

    Google Scholar 

  • Goldstein, H. (1986) Multilevel mixed linear model analysis using iterative generalized least squares, Biometrika, 73, 43–56.

    Google Scholar 

  • Goldstein, H. (1991) Nonlinear multilevel models, with an application to discrete response data, Biometrika, 78, 45–51.

    Google Scholar 

  • Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chain and their applications. Biometrika, 57, 97–109.

    Google Scholar 

  • Hills, S. E. and Smith, A. F. M. (1992) Parameterisation issues in Bayesian inference. In J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (eds) Bayesian Statistics 4 pp. 227–46, Oxford: University Press.

    Google Scholar 

  • Laird, N. M. and Ware, J. H. (1982) Random-effects models for longitudinal data, Biometrics, 38, 963–74.

    Google Scholar 

  • Liang, K. Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models, Biometrika, 73, 13–22.

    Google Scholar 

  • Lindley, D. V. and Smith, A. F. M. (1972) Bayes estimates for the linear model, Journal of the Royal Statistical Society B, 34, 1–19.

    Google Scholar 

  • Morrison, D. F. (1967) Multivariate Statistical Methods, pp. 86–8, McGraw-Hill.

  • Raftery, A. E. and Lewis, S. M. (1992a) How many iterations in the Gibbs Sampler? In J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (eds) Bayesian Statistics 4 pp. 763–73, Oxford: University Press.

    Google Scholar 

  • Raftery, A. E. and Lewis, S. M. (1992b) One long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Comment to Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457–72.

    Google Scholar 

  • Smith, A. F. M. and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, Journal of the Royal Statistical Society B, 55, 3–23.

    Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. (1995) BUGS: Bayesian inference using Gibbs sampling, Version 0.50. MRC Biostatistics Unit, Cambridge.

    Google Scholar 

  • Thomas, A., Spiegelhalter, D. J. and Gilks, W. R. (1992) BUGS: a Program to perform Bayesian inference using Gibbs sampling. In J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (eds) Bayesian Statistics 4 pp. 837–42, Oxford: University Press.

    Google Scholar 

  • Wakefield, J. C., Smith, A. F. M., Racine-Poon, A. and Gelfand, A. E. (1994) Bayesian analysis of linear and non-linear population models using the Gibbs sampler, Applied Statistics, 43, 201–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vines, S.K., Gilks, W.R. & Wild, P. Fitting Bayesian multiple random effects models. Stat Comput 6, 337–346 (1996). https://doi.org/10.1007/BF00143554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00143554

Keywords

Navigation