Skip to main content
Log in

A boundary-layer model for the determination of hourly surface wind characteristics in a representative tropical African region

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A quantative transposition model is introduced which determines hourly wind speeds in a representative tropical region (Central Sudan). The model consists of two parts. Firstly, a local boundary-layer model, based on the energy balance equation and the Businger-Dyer equations, is used to compute the average diurnal cycle of various characteristic boundary-layer parameters. Secondly, a horizontal transposition method is introduced to calculate wind speed behaviour at an arbitrary station from that at a reference station. This method is based on assumed spatial constancy of the turbulence parameter u * in the period November–April in a region of about (700 × 800) km2 in Central Sudan. The constancy of u * is concluded from the very stationary character of the climate. Model-computed hourly wind speeds are consistent with the potential wind speeds (at 10 m over open country) calculated from the measured data, and provide better local wind estimates than the conventional procedure which assumes constant regional hourly wind speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abele, J.: 1975, ‘Der Energiehaushalt der Erdoberfläche in der Regen-und Trockenzeit’, Tsumeb/SWA, Mitt. 9, Meteor. Rundschau 28, 139–147.

    Google Scholar 

  • ABu Bakr, E. H.: 1980, ‘Study of a Cylindrical Parabolic Concentrator’, B. Sc. Thesis, Physics Department, University Khartoum, Sudan.

    Google Scholar 

  • ABu Bakr, E. H., Rutten, M., Smulders, P. T., Vossers, G., and Wieringa, J.: 1986, ‘A Method to Obtain a Wind Model for the Boundary Layer in a Representative Tropical Region’, Proc. Europ. Wind Energy Conf. (Rome) 1, 213–218.

    Google Scholar 

  • ABu Bakr, E. H.: 1988a, ‘Central Sudan Surface Wind Data and Climate Characteristics’, Roy. Neth. Meteorol. Inst. Sc. Rep., WR 88-1.

  • ABu Bakr, E. H.: 1988b, ‘Boundary Layer Wind Regime of a Representative Tropical African Region, Central Sudan’, PhD. Thesis, Eindhoven University.

  • Bhumralkar, C. M., Mancuso, R. L., Ludwig, F. L., and Renne, D. S.: 1980, ‘A Practical and Economic Method to Estimate Wind Characteristics at Potential Wind Energy Conversion Sites’, Solar Energy 25, 55–65.

    Google Scholar 

  • Brutsaert, W.: 1975, ‘Comments on Surface Roughness Parameters and the Height of Dense Vegetation’, J. Meteorol. Soc. Japan 53, 96–97.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the Atmosphere: Theory, History and Application, D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Budyko, M. I.: 1956, The Heat Balance of the Earth's Surface (in Russian; Gidrometeoizdat, Leningrad), English transl. (1958) by N. A. Stepanova: US Dept. Commerce, Washington DC.

    Google Scholar 

  • Buursink, J.: 1971, ‘Soils of Central Sudan’, PhD. thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  • Davenport, A. G.: 1960, ‘Rationale for Determining Design Wind Velocities’, J. Am. Soc. Civ. Eng. ST-86, 39–69.

    Google Scholar 

  • De Bruin, H. A. R. and Holtslag, A. A. M.: 1982, ‘A Simple Parameterization of the Surface Fluxes of Sensible and Latent Heat During Daytime Compared with the Penman-Monteith Concept’, J. Appl. Meteorol. 21, 1610–1621.

    Google Scholar 

  • Duensing, G., Grunewald, G., and Martens, G.: 1985, Die Windverhaltnisse in überseeischen Landern in Hinblick auf die Windkraftnutzung (Africa), Einzelveroff, Seewetteramt Deutscher Wetterd, (Hamburg), 111, 115 pp.

    Google Scholar 

  • Duchêne-Marullaz, P.: 1977, Distributions statistiques et cartographie des vitesse moyennes de vent en France-applications à l'energie eolienne, Centre Scient. Techn. Bâtiment (Nantes) Rep. EN-CLI-77-20.

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Exell, R. H. B. and Fook, C. T.: 1986, ‘The Wind Energy Potential of Malaysia’, Solar Energy 36, 281–289.

    Google Scholar 

  • Farquharson, J. S.: 1938, ‘The Diurnal Variation of Wind Over Tropical Africa’, Quart. J. Roy. Meteorol. Soc. 65, 165–183, 452–454.

    Google Scholar 

  • Griffiths, J. F. and Soliman, K. H.: 1972, ‘The Northern Desert (Sahara)’ in Climates of Africa, World Survey of Climatology 10 (Elsevier, Amsterdam), pp. 75–131.

  • Gryning, S. E. and Larsen, S. E.: 1981, ‘Relation Between Dispersion Characteristics Over Surfaces with Dissimilar Roughness and Atmospheric Stability, Under Conditions of Equal Geostrophic Winds’. Atm. Env. 15, 983–987.

    Google Scholar 

  • Hamid, Y. H. and Jansen, W. A. M.: 1981, Wind Energy in Sudan, Report CWD 81–2, Amersfoort, The Netherlands.

    Google Scholar 

  • Holtslag, A. A. M. and Van Ulden, A. P.: 1983, ‘A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data’, J. Clim. Appl. Meteorol. 22, 517–529.

    Google Scholar 

  • Idso, S. B. and Jackson, R. D.: 1969, ‘Thermal Radiation from the Atmosphere’, J. Geophys. Res. 74, 5397–5403.

    Google Scholar 

  • Kondratyev, K. Y.: 1969, Radiation Processes in the Atmosphere, WMO No. 309.

  • Krishna, K.: 1968, ‘A Numerical Study of the Diurnal Variation of Meteorological Parameters in the Planetary Boundary Layer-Diurnal Variations of Winds’, Monthly Weath. Rev. 96, 269–276.

    Google Scholar 

  • List, R. J.: 1966, Smithsonian Meteorological Tables, Smithsonian Institution, Washington DC.

    Google Scholar 

  • Mayer, H. and Walk, O.: 1973, ‘Bodentemperaturen und Bodenwärmestrom in der Trockenzeit’, Tsumbeb/SWA, Mitt. 2, Meteor. Rundschau 26, 18–23.

    Google Scholar 

  • Mayer, H.: 1974, ‘Statistische Bearbeitung der Windgeschwindigkeits- und Windrichtungs-daten’, Tsumeb/SWA, Mitt. 6, Meteor. Rundschau 27, 181–187.

    Google Scholar 

  • Menenti, M.: 1984, Physical Aspects and Determination of Evaporation in Desert, Applying Remote Sensing Technique, PhD. Thesis and Report 10, Institute Land and Water Management Res., Wageningen, The Netherlands.

    Google Scholar 

  • Munn, R. E.: 1966, Descriptive Micrometeorology, Academic Press, New York.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Appl. Meteorol. 9, 857–861.

    Google Scholar 

  • Petersen, E. L., Troen, I., and Wieringa, J.: 1984, ‘Development of a Method for Wind Climate Analysis for Non-Mountainous Terrain in Europe’, Proc. Europ. Wind Energy Conf. (Hamburg) pp. 6–12.

  • Peterson, W. C. T. and Parton, W. J.: 1983, ‘Diurnal Variations of Wind Speeds at Short Grass Prairie Sites — a Model’, Agric. Meteorol. 28, 365–374.

    Google Scholar 

  • Reed, J. W.: 1975, ‘Wind Power Climatology’, Weatherwise 27, 237–242.

    Google Scholar 

  • Simiu, E.: 1973, ‘Logarithmic Profiles and Design Wind Speeds’, J. Am. Soc. Civ. Engin. EM-99, 1073–1083.

    Google Scholar 

  • Sutton, L. J.: 1923, The Climate of Khartoum, Min. Publ. Works Egypt Physical Dept. Paper No. 9.

  • Ten Berge, H. F. M.: 1986, ‘Heat and Water Transfer at the Bare Soil Surface’, PhD. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Tetzlaff, G.: 1982, ‘Nordafrikanischer Passat im Winter’ Berichte des Instituts für Meteorologie und Klimatologie der Universität Hannover, ISBN 3-923624-X No. 22.

  • Thams, J. C.: 1953, ‘Erfahrungen mit einem neuen Uberzug der Lamellen des Bimetallaktinographen Fuess-Robitzsch’, Geof. Pura Applic. 24, 115–124.

    Google Scholar 

  • Van Ulden, A. P. and Holtslag, A. A.: 1985, ‘Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications’, J. Clim. Appl. Meteorol. 24, 1196–1207.

    Google Scholar 

  • Van Wijk, W. R.: 1963, Physics of Plant Environment, North-Holland, Amsterdam.

    Google Scholar 

  • Venkatram, A.: 1980, ‘Estimating the Monin-Obukhov Length in the Stable Boundary Layer for Dispersion Calculations’, Boundary-Layer Meteorol. 19, 481–485.

    Google Scholar 

  • Walk, O.: 1972, ‘Beiträge zur Meteorologie eines Steppengebiets’, Tsumeb/SWA, Mitt. 1, Meteor. Rundschau 25, 163–170.

    Google Scholar 

  • Walk, O. and Wieringa, J.: 1988, ‘Tsumeb Studies of the Tropical Boundary-Layer Climate — Synopsis of Publications on a Savannah Observation Project of Karlsruhe University’, Wiss. Ver. Meteor. Inst. Univ. Karlsruhe 11.

  • Weather Bureau RSA: 1975, Climate of South Africa, Part 12: Surface Winds. Report WB-38, Pretoria.

  • Wieringa, J.: 1983, ‘Description Requirements for Assessment of Non-Ideal Wind Stations — for Example Aachen’, J. Wind Eng. Ind. Aerod. 11, 121–131.

    Google Scholar 

  • Wieringa, J.: 1986, ‘Roughness-Dependent Geographical Interpolation of Surface Wind Speed Averages’, Quart. J. Roy. Meteorol. Soc. 112, 867–889.

    Google Scholar 

  • Woodhead, T.: 1969, ‘The Diurnal Variation of Mean Wind Speed at Four Locations in Kenya and Tanzania’, E. Afr. Agric. For. J. 35, 160–165.

    Google Scholar 

  • Woodhead, T.: 1970, ‘Mapping Potential Evaporation for Tropical East Africa: The Accuracy of Penman Estimates Derived from Indirect Assessments of Radiation and Wind Speed’, Intern. Ass. Sc. Hydrol. Publ. 92, 232–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu Bakr, E.H., Wieringa, J. A boundary-layer model for the determination of hourly surface wind characteristics in a representative tropical African region. Boundary-Layer Meteorol 45, 325–353 (1988). https://doi.org/10.1007/BF00124007

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124007

Keywords

Navigation