Skip to main content
Log in

Effect of suspension on mouse bone microhardness

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Antiorthostatic (hindlimb) suspension of mice results in a considerable reduction of bone formation at the femur mid-diaphysis. Comparisons with appropriate control groups indicate that this reduction is attributable to the unloading aspect of the model, and not to physiological stress or changes in feeding. Microhardness measurements of bone are used to provide information on site-specific mineralization and structural properties. The microhardness of femora formed during suspension is significantly less than that formed in the bone of control mice. These differences are observed both along the endocortical (11%) and periosteal (8%) perimeters. The microhardness of bone formed prior to the experimental period (“extant bone”) is not different in comparing suspended and control mice, and increased microhardness values for these areas are observed in comparison to baseline controls. Mice used to control for the physiological stress and feeding portions of the suspension model do not demonstrate reduced microhardness. Thus, the limb unloading effects of suspension, not the induced stress or feeding changes, cause a reduction in microhardness. As microhardness is positively related to mineralization in these bones, it appears that the reduced mineralization accompanying suspension unloading may contribute to compromised structural properties of the bone formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. PATTERSON-BUCKENDAHL, S. B. Arnaud, G. L. Mechanic, R. B. Martin, R. E. Grindeland and C. E. Cann. Amer. J. Physiol. 252 (1987) R240.

    Google Scholar 

  2. G. P. EVANS, J. C. BEHIRI, J. D. CURREY and W. BONFIELD. J. Mater. Sci. Mater. Med. 1 (1990) 38.

    Google Scholar 

  3. R. B. MARTIN and J. ISHIDA. J. Biomech. 22 (1989) 419.

    Google Scholar 

  4. R. B. MARTIN and D. L. BOARDMAN. J. Biomech. 26 (1993) 1047.

    Google Scholar 

  5. T. J. WRONSKI and E. R. MOREY. Metab. Bone Dis. Rel. Res. 4 (1982) 69.

    Google Scholar 

  6. E. R. MOREY and D. J. BAYLINK. Science 201 (1978) 1138.

    Google Scholar 

  7. S. J. SIMSKE, A. R. GREENBERG and M. W. LUTTGES. J. Mater. Sci. Mater. Med. 2 (1991) 43.

    Google Scholar 

  8. S. J. SIMSKE, M. W. LUTTGES, K. A. ALLEN and E. G. GAYLES, Aviat. Space Environ. Med. 65 (1994) 123.

    Google Scholar 

  9. S. J. SIMSKE, J. J. BROZ, M. L. FLEET, T. A. SCHMEISTER, E. C. GAYLES and M. W. LUTTGES, J. Exp. Zool. 269 (1994) 227.

    Google Scholar 

  10. J. E. A. BERTRAM and S. M. SWARTZ, Biol. Rev. 66 (1991) 245.

    Google Scholar 

  11. R. AMPRINO, Acta Anat. 34 (1958) 161.

    Google Scholar 

  12. J. D. CURREY and K. BREAR, J. Mater. Sci. Mater. Med. 1 (1990) 14.

    Google Scholar 

  13. G. E. MCCLEARN, J. WILSON and W. MEREDITH, in “Contributions to behavior-genetic analysis: the mouse as a prototype” (Appleton, Century, Croft, New York, 1970) p. 3.

    Google Scholar 

  14. R. K. GLOBUS, D. D. BIKLE and E. MOREY-HOLTON, Endocrinology 118 (1986) 733.

    Google Scholar 

  15. S. J. SIMSKE, K. M. GUERRA, A. R. GREENBERG and M. W. LUTTGES, J. Biomech. 25 (1992) 489.

    Google Scholar 

  16. M. RAMRAKHIANI, D. PAL and T. S. MURTY, Acta Anat. 103 (1979) 358.

    Google Scholar 

  17. A. M. PARFITT, M. K. DREZNER, F. H. GLORIEUX, J. A. KANIS, H. MALLUCHE, P. J. MEUNIER, S. M. OTT and R. R. RECKER, J. Bone Min. Res. 2 (1987) 595.

    Google Scholar 

  18. A. M. PARFITT, Calcif. Tissue Int. 36 (1984) S123.

    Google Scholar 

  19. H. C. ANDERSEN, Lab. Invest. 60 (1989) 320.

    Google Scholar 

  20. J. K. WEAVER, J. Bone Joint Surg. (Amer.) 48 (1966) 273.

    Google Scholar 

  21. R. SHIRES, L. V. AVIOLI M. A. BERGFELD M. D. FALLON, E. SLATOPOLSKY and S. L. TEITELBAUM, Endocrinology 107 (1980) 1530.

    Google Scholar 

  22. S. SAKAMOTO and M. SAKAMOTO, in “Bone and mineral research/4”, (Elsevier Science, New York, 1986) p. 49.

    Google Scholar 

  23. J. AXELROD and T. D. REISINE, Science 224 (1984) 452.

    Google Scholar 

  24. R. S. BOCKMAN and S. A. WEINERMAN, Orthop. Clin. North Amer. 21 (1990) 97.

    Google Scholar 

  25. J. L. FERRETTI, S. O. VAZQUEZ, C. J. DELGADO, R. CAPOZZA and G. COINTRY, Calcif. Tissue Int. 50 (1992) 49.

    Google Scholar 

  26. B. P. HALLORAN, D. D. BIKLE, C. M. CONE and E. MOREY-HOLTON, Amer. J. Physiol. 225 (1988) E875.

  27. S. YASUMURA, Amer. J. Physiol. 230 (1976) 90.

    Google Scholar 

  28. R. H. FOLLIS, Proc. Soc. Exptl Biol. Med. 76 (1951) 722.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now deceased, Dr. Luttges lasting contributions to the subject are acknowledged

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simske, S.J., Broz, J.J. & Luttges, M.W. Effect of suspension on mouse bone microhardness. J Mater Sci: Mater Med 6, 486–491 (1995). https://doi.org/10.1007/BF00123375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123375

Keywords

Navigation