Skip to main content
Log in

Differences in myosin composition between human oro-facial, masticatory and limb muscles: enzyme-, immunohisto-and biochemical studies

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Immunohistochemistry was used to determine the myosin composition of defined fibre types of three embryologically different adult muscles, the oro-facial, masseter and limb muscles. In addition, the myosin composition in whole muscle specimens was analysed with biochemical methods. Both similarities and differences between muscles in the content of myosin heavy chains and myosin light chains were found. Nevertheless, each muscle had its own distinct identity. Our results indicated the presence of a previously undetected fast myosin heavy chain isoform in the oro-facial type II fibre population, tentatively termed ‘fast F’. The masseter contained aberrant myosin isoforms, such as foetal myosin heavy chain and α-cardiac myosin heavy chain and unique combinations of myosin heavy chain isoforms which were not found in the limb or oro-facial muscles. The type IM and IIC fibres coexpressed slow and fast A myosin heavy chains in the oro-facial and limb muscles but slow and a fast B like myosin heavy chain in the masseter. While single oro-facial and limb muscle fibres contained one or two myosin heavy chain types, single masseter fibres coexpressed up to four different myosin heavy chain isoforms. Describing the fibres according to their expression of myosin heavy chain isozymes, up to five fibre types could be distinguished in the oro-facial and limb muscles and eight in the masseter. Oro-facial and limb muscles expressed five myosin light chains, MLC1S, MLC2S, MLC1F, MLC2F and MLC3F, and the masseter four, MLC1S, MLC2S, MLC1F, and, in addition, an embryonic myosin light chain, MLCtemb, which is usually not present in normal adult skeletal muscle. These results probably reflect the way the muscles have evolved to meet the specialized functional requirements imposed upon them and are in agreement with the previously proposed concept that jaw and limb muscles belong to two distinct allotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • BARBET, J. P., THORNELL, L.-E. & BUTLER-BROWNE, G. S. (1991) Immunocytochemical characterization of two generations of fibres during the development of the human quadriceps muscle. Mech. Dev. 35, 3–11.

    Google Scholar 

  • BÄR, A. & PETTE, D. (1988) Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett. 235, 153–5

    Google Scholar 

  • BILLETER, R., HEIZMAN, C. W., HOWALD, H. & JENNY, E. (1981) Analysis of myosin light and heavy chain types in single human skeletal muscle fibres. Eur. J. Biochem. 116, 389–95.

    Google Scholar 

  • BILLETER, R., WEBER, H., LUTZ, H., HOWALD, H., EPPENBERGER, M. & JENNY, E. (1980) Myosin types in human skeletal muscle fibres. Histochem. 65, 24–259.

    Google Scholar 

  • BIRAL, D., BETTO, R., DANIELLI-BETTO, D. & SALVATI, G. (1988) Myosin heavy chain composition of single fibres from normal human muscle. Biochem. J. 250, 307–8.

    Google Scholar 

  • BREDMAN, J. J., WESSELS, A., WEIJS, W. A., KORFAGE, A. M., SOFFERS, C. A. S. & MOORMAN, F. M. (1991) Demonstration of ‘cardiac-specific’ myosin heavy chain in masticatory muscles of human and rabbit. Histochem. J. 23, 160–70.

    Google Scholar 

  • BROOKE, M. H. & KAISER, K. K. (1970) Muscle fibre types: how many and what kind? Archs. Neurol. Psychiat. Chicago 23, 369–79.

    Google Scholar 

  • BUTLER-BROWNE, G. S. & WHALEN, R. G. (1984) Myosin isozyme transition occurring during the postnatal development of the rat soleus muscle. Dev. Biol. 102, 324–34.

    Google Scholar 

  • BUTLER-BROWNE, G. S., BARBET, J. P. & THORNELL, L.-E. (1990) Myosin heavy and light chain expression during human skeletal muscle development and precocius muscle maturation induced by thyroid hormone. Anat. Embryol. 181, 513–22.

    Google Scholar 

  • BUTLER-BROWNE, G. S., ERIKSSON, P.-O., LAURENT, C. & THORNELL, L.-E. (1988) Adult human masseter muscle fibres express myosin isozymes characteristics of development. Muscle Nerve 11, 610–20.

    Google Scholar 

  • CARRARO, U. & CATANI, C. (1983) A sensitive SDS-PAGE method separating myosin heavy isoforms of rat skeletal muscles reveals the heterogeneous nature of the embryonic myosin. Biochem. Biophys. Res. Commun. 116, 793–802.

    Google Scholar 

  • CONSTANZA, N., AUSONI, S., MORETTI, P., GORZA, L., VELLECA, M., MERLIE, J., BUCKINGHAM, M. & SCHIAFFINO, S. (1992) Type 2X-MHC gene expression and fibre type differentiation in rat skeletal muscle. EMBO workshop: molecular biology and pathology of skeletal and cardiac myogenesis. Alghero, Italy.

  • DUBOWITZ, V. (1985) Muscle biopsy—a practical approach, 2nd edn. pp. 34–102. London: Bailliere Tindall.

    Google Scholar 

  • EDOM, F., MOULY, V., BARBET, J. P., FISZMAN, M. Y. & BUTLERBROWNE, G. S. (1994). Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains. Dev. Biol., in press.

  • ERIKSSON, P.-O. & THORNELL, L.-E. (1983) Histochemical and morphological muscle fibre characteristics of the human masseter, the medial pterygoid and the temporal muscles. Archs. Oral. Biol. 28, 781–95.

    Google Scholar 

  • ERIKSSON, P.-O., BUTLER-BROWNE, G. S. & THORNELL, L.-E. (1993) Immunohistochemical characterization of human masseter muscle spindles. Muscle Nerve 17, 31–41.

    Google Scholar 

  • ERIKSSON, P.-O., ERIKSSON, A., RINGQUIST, M. & THORNELL, L.-E. (1980) The reliability of histochemical fibre typing of human necropsy muscles. Histochem. 65, 193–205.

    Google Scholar 

  • ERIKSSON, P.-O., BUTLER-BROWNE, G. S., FISCHMAN, D. A., GROVE, B. K., SCHIAFFINO, S., VIRTANEN, I. & THORNELL, L.-E. (1988) Myofibrillar and cytoskeletal proteins in human muscle spindles. In Mechanoreceptors; Development, Structure and Function (edited by Hnik, P., Soukup, T., Vejsada, R. & Zelená, J.) pp. 273–4. New York: Plenum Press.

    Google Scholar 

  • FITZSIMONS, R. B. & HOH, J. F. Y. (1981) Embryonic and foetal myosins in human skeletal muscle. J. Neurol. Sci. 52, 367–84.

    Google Scholar 

  • FITZSIMONS, R. B. & HOH, J. F. Y. (1983) Myosin isoenzymes in fast-twitch and slow-twitch muscles of normal and dystrophic mice. J. Physiol. 343, 539–50.

    Google Scholar 

  • GAMBKE, B. & RUBINSTEIN, N. A. (1984) A monoclonal antibody to the embryonic myosin heavy chain of rat skeletal muscle. J. Biol. Chem. 259, 12092–100.

    Google Scholar 

  • GORZA, L. (1990) Identification of a novel type 2 fibre population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J. Histochem. Cytochem. 38, 257–65.

    Google Scholar 

  • GREGORY, P., LOW, R. B. & STIREWALT, W. S. (1987) Fractional synthesis rates in vivo of skeletal-muscle myosin isoenzymes. Biochem. J. 245, 133–7.

    Google Scholar 

  • HOH, J. F. Y., HUGHES, S., HUGH, G., & POZGAJ, I. (1989) Three hierarchies in skeletal muscle fibre classification allotype, isotype and phenotype. In UCLA Symposia on Molecular and Cellular Biology (edited by Stockdale, F. & Kedes, L.). Vol 93. pp. 15–26. New York: Alan R Liss Inc.

    Google Scholar 

  • KLITGAARD, H., ZHOU, M. SCHIAFFINO, S., BETTO, R., SALVATI, G. & SALTIN, B. (1990) Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. Acta Physiol. Scand. 140, 55–62.

    Google Scholar 

  • LEGER, J. O. C., BOUVAGNET, P., PAU, B., RONCUCCI, R. & LEGER, J. J. (1985) Levels of ventricular myosin fragments in human sera after myocardial infarction determined with monoclonal antibodies to myosin heavy chains. Eur. J. Clin. Invest. 15, 422–9.

    Google Scholar 

  • LOWEY, S., WALLER, G. S. & TRYBUS, K. M. (1993) Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365, 454–6.

    Google Scholar 

  • O'FARREL, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–21.

    Google Scholar 

  • PEDROSA-DOMELLÖF, F., ERIKSSON, P.-O., BUTLER-BROWNE, G. S. & THORNELL, L.-E. (1992) Expression of α-cardiac myosin heavy chain in mammalian skeletal muscle. Experentia 48, 491–4.

    Google Scholar 

  • PETTE, D. & STARON, R. S. (1990) Cellular and molecular diversities of mammalian skeletal muscle fibres. Rev. Physiol. Biochem. Pharmacol. 116, 1–76.

    Google Scholar 

  • PIEROBON-BORMIOLI, S., SARTORE, S., VITADELLO, M. & SCHIAFFINO, S. (1980) ‘Slow’ myosins in vertebrate skeletal muscles. J. Cell Biol. 85, 672–81.

    Google Scholar 

  • PIEROBON-BORMIOLI, S., SARTORE, R., DALLA LIBERA, L., VITADELLO, M. & SCHIAFFINO, S. (1981) Fast isomyosins and fibre types in mammalian skeletal muscle. J. Histochem. Cytochem. 29, 1179–88.

    Google Scholar 

  • RINGQUIST, M. (1974) Fibre types in human masticatory muscles. Relation to function. Scand. J. Dent. Res. 82, 333–5.

    Google Scholar 

  • SAEZ, L. & LEINWAND, L. A. (1986) Characterization of diverse forms of myosin heavy chain expression in adult human skeletal muscles. Nucleic Acids Res. 14, 2951–69.

    Google Scholar 

  • SARTORE, S., MASCARELLO, F., ROWLERSON, A., GORZA, L., AUSONI, S., VIANELLO, M. & SCHIAFFINO, S. (1987) Fibre types in extraocular muscles: a new myosin isoform in the fast fibres. J. Muscle Res. Cell Motil. 8, 161–72.

    Google Scholar 

  • SAWCHAK, J., LEUNG, B. & SHAFIQ, S. A. (1985) Characterization of a monoclonal antibody to myosin specific for mammalian and human type II muscle fibres. J. Neurol. Sci. 69, 247–54.

    Google Scholar 

  • SCHANTZ, P. & DHOOT, G. (1987) Coexistence of slow and fast isoforms of contractile and regulatory proteins in human skeletal muscle fibres induced by endurance training. Acta Physiol. Scand. 131, 147–54.

    Google Scholar 

  • SCHIAFFINO, S., GORZA, L., DONES, I., CORNELIO, F. & SARTORE, S. (1986) Fetal myosin immunoreactivity in human dystrophic muscle. Muscle Nerve 9, 51–8.

    Google Scholar 

  • SCHIAFFINO, S., GORZA, L., SARTORE, S., SAGGIN, L., AUSONI, S., SARTORE, S., VIANELLO, M., GUNDERSEN, K. & LØMO, T. (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J. Muscle Res. Cell Motil. 10, 197–205.

    Google Scholar 

  • STARON, R. S. (1991) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in single human muscle fibres. Histochem. 96, 21–4.

    Google Scholar 

  • STARON, R. S. & HIKIDA, R. S. (1992) Histochemical, biochemical, and ultrastructural analysis of single human muscle fibres, with special reference to the C-fiber population. J. Histochem. Cytochem. 40, 563–8.

    Google Scholar 

  • STERNBERGER, L. A. (1979) Immunohistochemistry. 2nd ed. New York: Wiley Medical.

    Google Scholar 

  • STÅL, P., ERIKSSON, P.-O., ERIKSSON, A. & THORNELL, L.-E. (1987) Enzyme-histochemical differences in fibre-type between the human major and minor zygomatic and the first dorsal interosseus muscles. Archs. Oral. Biol. 32, 833–41.

    Google Scholar 

  • STÅL, P., ERIKSSON, P.-O., ERIKSSON, A. & THORNELL, L.-E. (1990) Muscle fibre types in the human orbicularis oris and buccinator muscles. Archs. Oral Biol. 35, 449–58.

    Google Scholar 

  • THORNELL, L.-E., BILLETER, R., ERIKSSON, P.-O. & RINGQUIST, M. (1984) Heterogenous distribution of myosin in human masticatory muscle fibres as shown by immunocytochemistry. Archs. Oral Biol. 29, 1–5.

    Google Scholar 

  • THORNELL, L.-E., GROVE, B. K., PEDROSA, F., BUTLER-BROWNE, G. S., DHOOT, G. K. & FISCHMAN, D. A. (1989) Expression of slow tonic myosin in muscle spindle fibres early in mammalian development. Cellular and molecular biology of muscle development. In UCLA Symposia on Molecular and Cellular Biology (edited by Stockdale, F. E. & Kedes, L. H.) Vol. 93. pp. 471–80. New York: Alan R Liss.

    Google Scholar 

  • TSIKA, R. W., HERRICK, R. E. & BALDWIN, K. M. (1987a) Subunit composition of rodent isomyosins and their distribution in hindlimb skeletal muscles. J. Appl. Physiol. 63, 2101–10.

    Google Scholar 

  • TSIKA, R. W., HERRICK, R. E. & BALDWIN, K. M. (1987b) Time course adaptions in rat skeletal muscle isomyosins during compensatory growth and regression. J. Appl. Physiol. 63, 2111–21.

    Google Scholar 

  • WHALEN, R. G., BUTLER-BROWNE, G. S. & GROS, F. (1978) Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells. J. Mol. Biol. 126, 415–31.

    Google Scholar 

  • WHALEN, R. G., SELL, S. M., BUTLER-BROWNE, G. S., SCHWARTZ, K., BOUVERT, P., PINSET-HARSTROM, I. (1981) Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature 292, 805–9.

    Google Scholar 

  • WIECZOREK, D. F., PERIASAMY, M., BUTLER-BROWNE, G., WHALEN, R. G., NADAL-GINARD, B. (1985) Co-expression of multiple myosin heavy chain genes, in addition to a tissue specific one, in extraocular musculature. J. Cell Biol. 101, 618–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stål, P., Eriksson, PO., Schiaffino, S. et al. Differences in myosin composition between human oro-facial, masticatory and limb muscles: enzyme-, immunohisto-and biochemical studies. J Muscle Res Cell Motil 15, 517–534 (1994). https://doi.org/10.1007/BF00121158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121158

Keywords

Navigation