Skip to main content
Log in

The solubility of SO2 and the dissociation of H2SO3 in NaCl solutions

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The pK 1 * and pK 2 * of H2SO3 have been determined in NaCl solutions as a function of ionic strength (0.1 to 6 m) and temperature (5 and 25 °C). The extrapolated values in water were found to be in good agreement with literature data. The experimental results have been used to determine the Pitzer interaction parameters for SO2, HSO -3 and SO -3 in NaCl solutions. The resultant parameters for NaHSO3 and Na2SO3 were found to be in reasonable agreement with the values for NaHSO4 and Na2SO4. It, thus, seems reasonable to assume that the interactions of Mg2+ and Ca2+ with HSO -3 and SO -3 can be estimated from the values with HSO -4 and SO -4 until experimental values are available. Measurements of pK 1 * and pK 2 * in artificial seawater were found to be in good agreement with the calculated values using the derived Pitzer parameters. It is, thus, possible to make reasonable estimates of the activity coefficients of HSO -3 and SO -3 ions and pK 1 * and pK 2 * for the ionization of H2SO3 in marine aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arena, G., Rizarelli, E., Sammartono, S., and Rigano, C., 1979, A non-linear least-squares approach to the refinement of all parameters involved in acid-base titration, Talanta26, 1–14.

    Article  Google Scholar 

  • Bates, R. G. and Robinson, R. A., 1980, Standardization of silver-silver chloride electrodes from 0 to 60 °C, J. Solution Chem.9, 455–456.

    Google Scholar 

  • Cattell, F. C. R., Scott, W. D., and Du, Cross, D., 1977, Chemical composition of aerosol particles greater than 1 μm diameter in the vicinity of Tasmania, J. Geophys. Res.82, 3457–3462.

    Article  Google Scholar 

  • Connaughton, L. M., Hershey, J. P. and Millero, F. J., 1986, PVT properties of concentrated electrolytes. V. The density of NaCl, Na2SO4, MgCl2 and MgSO4 from 0 to 100 °C, J. Solution Chem.15, 989–1002.

    Article  Google Scholar 

  • Darzi, M. and Winchester, J. W., 1981, Marine aerosol composition in the Indian Ocean, Symposium on the Role of the Oceans in Atmospheric Chemistry, IAMAP Third Scientific Assembly, Hamburg, FRG.

  • Daum, P. H., Kelly, T. J., Schwartz, S. E., and Newman, L., 1984, Measurements of chemical composition of stratiform clouds, Atmos. Environ.18, 2671–2684.

    Article  Google Scholar 

  • Douabul, A. A. and Riley, J. P., 1979, Solubility of sulfur dioxide in distilled water and decarbonated sea water, J. Chem. Eng. Data24, 274–276.

    Article  Google Scholar 

  • Goldberg, R. N. and Parker, V. B., 1985, Thermodynamics of solution of SO2 (g) in water and of aqueous sulfur dioxide solutions, J. Res. National Bureau of Standards90, 341–358.

    Article  Google Scholar 

  • Harvie, C. E., Moller, N., and Weare, J. H., 1984, The prediction of mineral solubilities in natural waters: the Na−K−Mg−Ca−H−Cl−SO4−OH−HCO3−CO3−CO2−H20 systems to high ionic strengths at 25 °C, Geochim. Cosmochim. Acta48, 723–751.

    Article  Google Scholar 

  • Hershey, J. P., Millero, F. J., and Plese, T., 1988, The pK 1 * for the dissociation of H2S in various media, Geochim. Cosmochim. Acta52, 2047–2051.

    Article  Google Scholar 

  • Hoffmann, M. R. and Edwards, J. O., 1975, Kinetics of the oxidation of sulfite by hydrogen peroxide in acid solution, J. Phys. Chem.79, 2096–2098.

    Article  Google Scholar 

  • Johansson, T. B., Van, Grieken, R. E., and Winchester, J. W., 1974, Marine influences on aerosol composition in the coastal zone, J. Rech. Atmos.8, 761–776.

    Google Scholar 

  • Khoo, K. H., Ramette, R. W., Culberson, C. H., and Bates, R. G., 1977, Determination of hydrogen ion concentrations in seawater from 5 to 40 °C: Standard potentials at salinities from 20 to 45%, Anal. Chem.49, 29–34.

    Article  Google Scholar 

  • Kim, H.-T. and FrederickJr., W. J., 1988, Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C, I. Single salt parameters, J. Chem. Eng. Data33, 177–184.

    Article  Google Scholar 

  • Lantzke, I. R., Covington, A. K., and Robinson, R. A., 1973, Osmotic and activity coefficients of sodium dithiorate and sodium sulfite at 25 °C, J. Chem. Eng. Data18, 241–242.

    Article  Google Scholar 

  • Maahs, H. G., 1983, Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in non-urban tropospheric couds, J. Geophys. Res.88, 10,721–10,732.

    Article  Google Scholar 

  • McArdle, J. V. and Hoffmann, M. R., 1983, Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH, J. Phys. Chem.87, 5425–5429.

    Article  Google Scholar 

  • Millero, F. J., 1982, Use of models to determine ionic interactions in natural waters, Thalassia Jugoslavica18, 253–291.

    Google Scholar 

  • Millero, F. J., 1983, The estimation of the pK HA * of acids in seawater using the Pitzer equations, Geochim. Cosmochim. Acta47, 2121–2129.

    Article  Google Scholar 

  • Millero, F. J. and Thurmond, V., 1983, The ionization of carbonic acid in Na−Mg−Cl solutions at 25 °C, J. Solution Chem.12, 401–412.

    Article  Google Scholar 

  • Morgan, R. S., 1961, Activity coefficients of sodium sulfite in aqueous solution at 25 °C, J. Chem. Eng. Data6, 21–23.

    Article  Google Scholar 

  • Pitzer, K. S., 1979, Theory: ion interaction approach, in R. M., Pytkowicz (ed.), Activity Coefficients in Electrolyte Solutions, Vol. 1, Chap. 7, CRC Press, Boca Raton, Florida, pp. 209–265.

    Google Scholar 

  • Pitzer, K. S. and Kim, J. J., 1974, Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes, J. Am. Chem. Soc.96, 5701–5707.

    Article  Google Scholar 

  • Pitzer, K. S. and Mayorga, G., 1973, Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem.77, 2300–2308.

    Article  Google Scholar 

  • Pitzer, K. S. and Mayorga, G., 1974, Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes, J. Solution Chem.3, 539–546.

    Article  Google Scholar 

  • Tanner, R. L., 1982, An ambient experimental study of phase equilibrium in the atmospheric system: aerosol H+, NH +4 , SO 2-4 , NO -3 , NH3 (g), NHO3 (g), Atmos. Environ.16, 2935–2942.

    Article  Google Scholar 

  • Thurmond, V. and Millero, F. J., 1982, Ionization of carbonic acid in sodium chloride solutions at 25 °C, J. Solution Chem.11, 447–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millero, F.J., Hershey, J.P., Johnson, G. et al. The solubility of SO2 and the dissociation of H2SO3 in NaCl solutions. J Atmos Chem 8, 377–389 (1989). https://doi.org/10.1007/BF00052711

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052711

Key words

Navigation