Skip to main content
Log in

Exploring aquatic ecosystem health: a multi-trophic and an ecosystemic approach

I. Rationale and application

  • Published:
Journal of Aquatic Ecosystem Health

Abstract

The field of aquatic ecosystem health is a new and developing discipline. The restoration and recovery of habitats is extremely complex and requires a clear understanding of a desirable and maximum/minimum set of conditions which is acceptable, achievable, and cost-effective for implementation. Since this field of research is still in its infancy, the technology for an integrative and innovative assessment will require a combination of physical, chemical, and biological methods and researchers will have to adopt and use some of the routine chemical, limnological, physiological, ecological, and toxicological procedures. A multi-disciplinary, multi-trophic and an ecosystemic approach has been initiated and applied in the North American Great Lakes during the past several years. This strategy, consisting of structural and functional indicators and endpoints, was implemented in the Great Lakes ‘Areas of Concern’ adopting a field to laboratory approach for a holistic and integrated evaluation of the ecosystem. Some examples from our Great Lakes experience are presented. The ecosystem health technology should look beyond the traditional approach and must develop innovative, sensitive, automated, and cost-effective procedures including computer-assisted techniques to deal with the problems of stress, healing, recovery, and remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedard, D., A. Hayton & D. Persaud, 1992. Ontario Ministry of the Environment laboratory sediment biological testing protocol. Queen's Printer for Ontario. ISBN 0-7729-9924-4. 26 pp.

  • Blanck, H., 1985. A simple, community level, ecotoxicological test system using samples of periphyton. Hydrobiologia 124: 251–261.

    Google Scholar 

  • Borgmann, U. & M., Munawar, 1989. A new standardized sediment bioassay protocol using the amphipodHyalella azteca (Saussure). In: M., Munawar, G., Dixon, C. I., Mayfield, T., Reynoldson & M. H., Sadar (eds),Environmental Bioassay Techniques and their Application. Developments in Hydrobiology 54: 425–531. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.

    Google Scholar 

  • Burkill, P. H., 1987. Analytical flow cytometry and its application to marine microbial ecology. In: M. A., Sleigh (ed.),Microbes in the Sea, pp. 139–166. Ellis Horwood, Chichester.

    Google Scholar 

  • Burton, G. A., Jr. & G. R. Lanza, 1985. Sediment microbial activity tests for the detection of toxicant impacts. In: R. Cardwell, R. Purdy & R. Bahner (eds),Aquatic Toxicology and Hazard Assessment. Amer. Soc. Test Materials STP 854: 214–218.

  • Burton, G. A.Jr., B. L., Stemmer, L. K., Winks, P. E., Ross & L. C., Burnett, 1989. A multitrophic level evaluation of sediment toxicity in Waukegan and Indiana Harbors. Environ. Toxicol. Chem. 8: 783–789.

    Google Scholar 

  • Cairns, J.Jr., 1984. Multi-species toxicity testing. Environ. Toxicol. Chem. 3: 1–3.

    Google Scholar 

  • Cairns, J.Jr., 1986. The myth of the most sensitive species. BioScience 36: 670–672.

    Google Scholar 

  • Cairns, J.Jr., 1992. Restoring ecosystem health and integrity during a human population increase to ten billion. J. Aquat. Ecosyst. Health 1(1): 59–68.

    Google Scholar 

  • Cairns, J.Jr. & B. R., Neiderlehner, 1987. Problems associated with selecting the most sensitive species for toxicity testing. Hydrobiologia 153: 87–94.

    Google Scholar 

  • Cairns, J.Jr., D. L., Kuhn & J. L., Plafkin, 1979. Protozoan colonization of artificial substrates. In: R. L., Weitzel (ed.),Methods and Measurements of Periphyton Communities: A Review, pp. 34–57. Amer. Soc. Test Materials, Philadelphia, PA.

    Google Scholar 

  • Cairns, J.Jr., J. R., Pratt & B. R., Niederlehner, 1985. A provisional multispecies toxicity test using indigenous organisms. J. Test. Eval. 13: 316–319.

    Google Scholar 

  • Calow, P., 1992. Can ecosystems be healthy? Critical consideration of concepts. J. Aquat. Ecosyst. Health 1(1): 1–5.

    Google Scholar 

  • Crossey, M. J. & T. W., Lapoint, 1988. A comparison of periphyton community structural and functional responses to heavy metals. Hydrobiologia 162: 109–121.

    Google Scholar 

  • Davis, C., 1966. Plankton studies in the largest Great Lakes of the world. Pub. Great Lakes Res. Div., Univ. Michigan. 14.

  • Davis, W. S. & J. E., Lathrop, 1992. Freshwater benthic macroinvertebrate community structure and function. In: Sediment Classification Methods Compendium. Chapter 8 U.S. Environ. Protect. Agency, Office of Water, Washington, DC. Publication No. EPA/823/R-92/006.

    Google Scholar 

  • Dermott, R. M., 1984. Benthic fauna assemblages in Batchawana Bay, Lake Superior. Can. Tech. Rep. Fish. Aquat. Sci. 1265.

  • Dermott, R. M. & M., Munawar, 1992. A simple and sensitive assay for evaluation of sediment toxicity usingLumbriculus variegatus (Muller). In: B. T., Hart & P. G., Sly (eds),Sediment/Water Interactions V. Developments in Hydrobiology 75: 407–414. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 235/236.

    Google Scholar 

  • Giesy, J. P. & R. A., Hoke, 1989. Freshwater sediment toxicity bioassessment: rationale for species selection and test design. J. Great Lakes Res. 15: 539–569.

    Google Scholar 

  • Henebry, M. S. & P. E., Ross, 1989. Use of protozoan communities to assess the ecotoxicological hazard of contaminated sediments. Tox. Assess. 4: 209–227.

    Google Scholar 

  • Höll, K., 1928. Oekologie Der Peridineen. Studien über den Einfluss chemischer und physikalischer faktoren auf die Verbreitung Der Dino-Flagellaten um Süsswasser. Pflanzenforschung, 11. 343 pp.

  • Hutchinson, G. E., 1967.A treatise on Limnology. Vol. 2. Wiley & Sons, New York. 1115 pp.

    Google Scholar 

  • IJC (International Joint Commission), 1987. Guidance on Characterization of Toxic Substances Problems in Areas of Concern in the Great Lakes Basin. Report to the Great Lakes Water Quality Board, Windsor, Ontario. 179 pp.

  • IJC, 1991.Indicators of Ecosystem Health. ISBN 1-895085-29-2.47 pp.

  • ISO (International Organization for Standardization), 1989a. Water quality: Determination of the inhibition of the mobility ofDaphnia magna Straus (Cladocera, Crustacea). ISO, 6341. 8 pp.

  • ISO, 1989b. Water quality: Freshwater algal growth inhibition test withScenedesmus subspicatus andSelenastrum capricornatum. ISO, 8692. 6 pp.

  • Jarnefelt, H., 1952. Plankton als Indikator der Trophiegruppen dur Seen. Ann. Acad. Scient. Fennicae. A IV 18: 1–27.

    Google Scholar 

  • Kamentsky, L. A., M. R., Melamed & H., Derman, 1965. Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150: 630.

    Google Scholar 

  • Legner, M., 1990. Phytoplankton quantity assessment by means of flow cytometry. Mar. Microb. Food Webs 4: 161–174.

    Google Scholar 

  • Legner, M. & B. Desortova, 1979. Cytofluorograf enables quantitative measurements in protists. J. Protozool. 26: 44A. (abstract)

  • Li, W., 1988. Analysis of phytoplankton autofluorescence and size by flow cytometry. Can. Res. (Feb.): 18–22.

  • Linder, G., E., Ingham, C. J., Brandt & G., Henderson, 1992. Evaluation of Terrestrial Indicators for Use in Ecological Assessments at Hazardous Waste Sites. U.S. Environ. Protect. Agency, Environ. Res. Lab., Corvalis, OR. Res. Dev. Rep. EPA/600/R-92/183.

    Google Scholar 

  • Lundgren, A., 1984. Model ecosystems as a tool in aquatic ecotoxicology. Arch. Hydrobiol./Suppl. 70(2): 157–196.

    Google Scholar 

  • Lynn, D. H. & G. L., Gilron, 1992. A brief review of approaches using ciliated protists to assess aquatic ecosystem health. J. Aquat. Ecosyst. Health 1 (4): 263–270.

    Google Scholar 

  • Mac, M. J., 1988. Toxic substances and survival of Lake Michigan salmonids: field and laboratory approaches. In: M. S. Evans (ed.),Toxic Contaminants and Ecosystem Health, pp. 389–401. Wiley & Sons.

  • Mayfield, C. I. & M., Munawar, 1988. Microcomputer-based measurements of algal fluorescence as a potential indicator of environmental contamination. Bull. Environ. Contam. Toxicol. 41: 261–266.

    Google Scholar 

  • Munawar, M., 1982. Toxicity studies on natural phytoplankton assemblages by means of fractionation bioassays. Can. Tech. Rep. Fish. Aquat. Sci. 1152.

  • Munawar, M. & I. F., Munawar, 1978. Phytoplankton of Lake Superior 1973. J. Great Lakes Res. 4: 415–422.

    Google Scholar 

  • Munawar, M. & I. F., Munawar, 1980. The importance of using standard techniques in the surveillance of phytoplankton indicator species for the establishment of long range trends in the Great Lakes: a preliminary example, Lake Erie. Can. Tech. Rep. Fish. Aquat. Sci. 976: 59–86.

    Google Scholar 

  • Munawar, M. & I. F., Munawar, 1981. A general comparison of the taxonomic composition and size analyses of the phytoplankton of the North American Great Lakes. Verh. Internat. Verein. Limnol. 21: 1695–1716.

    Google Scholar 

  • Munawar, M. & I. F., Munawar, 1982. Phycological studies in Lakes Ontario, Erie, Huron and Superior. Can. J. Bot. 60: 1837–1858.

    Google Scholar 

  • Munawar, M. & I. F., Munawar, 1986. The seasonality of phytoplankton in the North American Great Lakes, a comparative synthesis. In: M., Munawar & J. F., Talling (eds),Seasonality of Freshwater Phytoplankton: A Global Perspective. Developments in Hydrobiology 33: 85–115. Dr W. Junk Publishers, Dordrecht. Reprinted from Hydrobiologia 138.

    Google Scholar 

  • Munawar, M. & I. F., Munawar, 1987. Phytoplankton bioassays for evaluating toxicity ofin situ sediment contaminants. In: R., Thomas, R., Evans, A., Hamilton, M., Munawar, T., Reynoldson & H., Sadar (eds),Ecological Effects of In Situ Sediment Contaminants. Developments in Hydrobiology 39: 87–105. Dr W. Junk Publishers, Dordrecht. Reprinted from Hydrobiologia 149.

    Google Scholar 

  • Munawar, M. & T., Weisse, 1989. Is the ‘microbial loop’ an early warning indicator of anthropogenic stress? In: M., Munawar, G., Dixon, C. I., Mayfield, T., Reynoldson & M. H., Sadar (eds),Environmental Bioassay Techniques and their Application. Developments in Hydrobiology 54: 163–174. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.

    Google Scholar 

  • Munawar, M., P. Stadelmann & I. F. Munawar, 1974. Phytoplankton biomass, species composition and primary production at a nearshore and a midlake station of Lake Ontario during IFYGL. Proc. 17th Conf. Great Lakes. Res., Internat. Assoc. Great Lakes Res. pp. 629–652.

  • Munawar, M., I. F., Munawar, L. R., Culp & G., Dupuis, 1978. Relative importance of nannoplankton in Lake Superior phytoplankton biomass and community metabolism. J. Great Lakes Res. 4: 462–480.

    Google Scholar 

  • Munawar M., I. F. Munawar & L. H. McCarthy, 1987a. Phytoplankton ecology of large eutrophic and oligotrophic lakes of North America: Lakes Ontario and Superior. In: M. Munawar (ed.),Proc. Internat. Symp. on Phycology of Large Lakes of the World. Arch. Hydrobiol., Beih. Ergebn. Limnol. 25: 51–96.

  • Munawar, M., I. F., Munawar, W., Norwood & C., Mayfield, 1987b. Significance of autotrophic picoplankton in the Great Lakes and their use as early indicators of contaminant stress. Arch. hydrobiol. Beih. Ergebn. Limnol. 25: 141–155.

    Google Scholar 

  • Munawar, M., I. F., Munawar, P. E., Ross & C., Mayfield, 1987c. Differential sensitivity of natural phytoplankton size assemblages to metal mixture toxicity. Arch. Hydrobiol. Beih. Ergebn. Limnol. 25: 123–139.

    Google Scholar 

  • Munawar, M., D., Gregor, S. A., Daniels & W. P., Norwood, 1989a. A sensitive screening bioassay technique for the toxicological assessment of small quanities of contaminated bottom or suspended sediments. In: P. G., Sly & B. T., Hart (eds),Sediment/Water Interactions IV. Developments in Hydrobiology 50: 497–507. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 176/177.

    Google Scholar 

  • Munawar, M., I. F., Munawar & G. G., Leppard, 1989b. Early warning assays: An overview of toxicity testing with phytoplankton in the North American Great Lakes. In: M., Munawar, G., Dixon, C. I., Mayfield, T., Reynoldson & M. H., Sadar (eds),Environmental Bioassay Techniques and their Application. Developments in Hydrobiology 54: 237–246. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.

    Google Scholar 

  • Munawar, M., I. F., Munawar, C. I., Mayfield & L. H., McCarthy, 1989c. Probing ecosystem health: A multidisciplinary and multi-trophic assay strategy. In: M., Munawar, G., Dixon, C. I., Mayfield, T., Reynoldson & M. H., Sadar (eds),Environmental Bioassay Techniques and their Application. Developments in Hydrobiology 54: 93–116. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.

    Google Scholar 

  • Munawar, M., G., Leppard & I. F., Munawar, 1991. Ecotoxicology of stressed environments: Structural and functional strategy. Verh. Internat. Verein. Limnol. 24: 3080–3086.

    Google Scholar 

  • Naumann, E., 1919. Nagra Synpunkter Angaende Planktons Ökologi. Med. sarskild Hansyn Till Fytoplankton. Svensk. Bot. Tidskr. 13: 129–258 (Swedish Text); (German Summ. 158–163).

    Google Scholar 

  • Naumann, E., 1931. Limnologische Terminologie E. Abderhalden. Handbuch Der Biologischen Arbeitsmethoden. Berlin and Wien Urban and Schwarzenberg Abt IX, Teil 8.

  • Nygaard, G., 1949. Hydrobiological studies on some Danish ponds and lakes. Part II. The quotient hypothesis and some new or little known phytoplankton organisms. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, Bind VII, NR. 1.

  • Olson, R. J., D., Vaulot & S. W., Chisholm, 1985. Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res 32: 1273–1280.

    Google Scholar 

  • Olson, R. J., S. W., Chisholm, E. R., Zettler & E. V., Armbrust, 1988. Analysis ofSynechococcus pigment types in the sea using single and dual beam flow cytometry. Deep-Sea Res. 35: 425–440.

    Google Scholar 

  • Platt, T. & K., Denman, 1978. The structure of marine pelagic ecosystems. Couns. Perm. Internat. Explor. Mer, R. et P.-V. 173: 60–65.

    Google Scholar 

  • Porter, K. G. & Y. S., Feig, 1980. The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Pratt, J.R. & J., CairnsJr., 1985. Functional groups in the protozoa: roles in differing ecosystems. J. Protozool. 32: 415–423.

    Google Scholar 

  • Pratt, J. R., J., CairnsJr. & P. M., Stewart, 1985. Development of microbial communities in mined lands. In: D. E., Smuel & J. B., Hill (eds),Wetlands and Water Management of Mined Lands. Pennsylvania State Univ., University Park, PA.

    Google Scholar 

  • Rapport, D. J., 1992. Evaluating ecosystem health. J. Aquat. Ecosyst. Health 1(1): 15–24.

    Google Scholar 

  • Regier, H. A., 1992. Ecosystem integrity in the Great Lakes Basin: an historical sketch of ideas and actions. J. Aquat. Ecosyst. Health 1(1): 25–37.

    Google Scholar 

  • Ribo, J. M. & K. L. E., Kaiser, 1991.Photobacterium phosphoreum toxicity bioassay, I. Test procedures and applications, Tox. Asess. 2: 305–323.

    Google Scholar 

  • Robertson, B. R. & D. K., Button, 1989. Characterizing aquatic bacteria according to population, cell size, and apparent DNA content of flow cytometry. Cytometry 10: 70–76.

    Google Scholar 

  • Rodriguez, J. & M. M., Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31: 361–370.

    Google Scholar 

  • Ross, P. E. 1992. A Summary of the Sediment Assessment Strategy Recommended by the International Joint Commission. In: Sediment Classification Methods Compendium. Chapter 12. U.S. Environ. Protect. Agency, Office of Water, Washington, DC. Publication No. EPA/823/R092/006.

    Google Scholar 

  • Ross, P. E. & M. S., Henebry, 1989. Use of four microbial tests to assess the ecotoxicological hazard of contaminated sediments. Tox. Assess. 4: 1–21.

    Google Scholar 

  • Ross, P. E. & M., Munawar, 1987. Zooplankton filtration rates at offshore stations in the St. Lawrence Great Lakes. Arch. Hydrobiol. Beih. Ergenb. Limnol. 25: 157–164.

    Google Scholar 

  • Ross, P. E., L. C. Burnett, C. Kermode & M. Timme, 1991. Miniaturizing a toxicity test battery for screening contaminated sediments. In: Chapman, P. F. Bishay, I. Power, K. Hall, L. Harding, D. McLeay, M. Nassichuk & W. Knapp (eds),Proceedings of the Seventeenth Annual Aquatic Toxicity Workshop: November 5–7, 1990, Vancouver, B.C. Can. Tech. Rep. Fish. Aquat. Sci. 1774: 331–335.

  • Santiago, S. & R. L., Thomas, 1992. Phytoplankton utilization of phosphorus bound to suspended sediments from selected tributaries to Lake Geneva. J. Great Lakes Res. 18: 372–389.

    Google Scholar 

  • Sheldon, R. W. & T. R., Parsons, 1967. A continuous size spectrum for particulate matter in the sea. J. Fish. Res. Board Can. 24: 909–915.

    Google Scholar 

  • Sheldon, R. W., A., Prakash & W. H., SutcliffeJr., 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.

    Google Scholar 

  • Sheldon, R. W., W. H., SutcliffeJr. & M. A., Paranjape, 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Board Can. 34: 2344–2353.

    Google Scholar 

  • Smith S. B., M. J. Mac, A. E. MacCubbin & J. C. Harshbarger, 1988. External abnormalities and incidence of tumors in fish collected from three Great Lakes Areas of Concern. Pap. pres. 31st Conference on Great Lakes Research, McMaster University, Hamilton, ON. 17–20 May, 1988.

  • Sprules, W. G. & M., Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci. 43: 1789–1794.

    Google Scholar 

  • Sprules, W. G. & M., Munawar, 1991. Plankton community structure in Lake St. Clair, 1984. In: M., Munawar & T., Edsall (eds),Environmental Assessment and Habitat Evaluation of the Upper Great Lakes Connecting Channels. Developments in Hydrobiology 65: 229–237. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 219.

    Google Scholar 

  • Sprules, W. G., M., Munawar & E. H., Jin, 1988. Plankton community structure and size spectra in the Georgian Bay and North Channel ecosystems. Hydrobiologia 163: 135–140.

    Google Scholar 

  • Trask, B. J., G. J.van den, Engh & J. H. B. W., Elgershuizen, 1982. Analysis of phytoplankton by flow cytometry. Cytometry 2: 258–264.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Internat. Verein. Limnol. 9: 1–38.

    Google Scholar 

  • Vollenweider, R. A., M., Munawar & P., Stadelmann, 1974. A comparative view of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish. Res. Board Can. 31: 739–762.

    Google Scholar 

  • Weisse, T. & M. Munawar, 1989. Evaluation of the microbial loop in the North American Great Lakes. Can. Tech. Rep. Fish. Aquat. Sci. 1709.

  • Wood, A. M., P. K., Horan, K., Muirhead, D. A., Phinney, C. M., Yentsch & J. B., Waterburry, 1985. Discrimination between types of pigments in marineSynechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry. Limnol. Oceanogr. 30: 1303–1315.

    Google Scholar 

  • Yentsch, C. M., P. K., Horan, K., Muirhead, Q., Dortch, E., Haugen, L., Legendre, L. S., Murphy, M. J., Perry, D. A., Phinney, S. A., Pomponi, R. W., Spinnrad, M., Wood, C. S., Yentsch & B. J., Zahuranec, 1983. Flow cytometry and cell sorting: A technique for analysis and sorting of aquatic particles. Limnol. Oceanogr. 28: 1275–1280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munawar, M., Munawar, I.F., Ross, P. et al. Exploring aquatic ecosystem health: a multi-trophic and an ecosystemic approach. J Aquat Ecosyst Stress Recov 1, 237–252 (1992). https://doi.org/10.1007/BF00044166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044166

Keywords

Navigation