Skip to main content
Log in

Relative importance of pico-, nano-, and microplankton to the productivity of Mountain Lake, Virginia

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Studies of the relative importance of various phytoplankton size classes (pico-, nano-, micro-, and macro-) during thermal stratification at oligomesotrophic Mountain Lake, Giles County, Virginia were conducted from March through October 1994. A detailed time- and depth-series study was conducted to compare 14C-fixation rates in these phytoplankton size fractions. Data indicated that on average the microplankton were the most important size class in cell number and cell volume and contributed ≈95% of the total primary productivity. The picoplankton ranked second in importance constituting ≈5% of total primary productivity, whereas the relatively small numbers of nano- and macroplankton contributed little primary productivity. No obvious relationships were apparent among cell densities, cell volumes, and chlorophyll a values during late summer thermal stratification, possibly due to shifts in community structure at that time. The findings contrast with many other oligo- to mesotrophic ecosystems where the pico- and nanoplankton have demonstrated significantly greater importance, especially in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (APRA), American Water Works Association (AWWA), and Water Pollution Control Federation (WPCF), 1989. Standard methods for the examination of water and wastewater (17th edn). APHA, Washington, D.C.

    Google Scholar 

  • Beaty, M. H., 1995. Limnological investigations of a natural, suba-lpine lake in the early stages of eutrophication: Mountain Lake, Giles County, Virginia. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 210 pp.

    Google Scholar 

  • Beaty, M. H. & B. C. Parker, 1994. Investigations of eutrophication in Mountain Lake, Giles County, Virginia. Virginia Water Resources Research Center Bull. 184 and the Wilderness Conservancy at Mountain Lake Occasional Paper No. 1: i-x, 1–66.

    Google Scholar 

  • Burns, C. W. & J. G. Stockner, 1991. Picoplankton in six New Zealand lakes: Abundance in relation to season and trophic state. Int. Revue ges. Hydrobiol. 76: 523–536.

    Google Scholar 

  • Caron, D. A., F. R. Pick, & D. R. S. Lean, 1985. Chroococcoid cyanobacteria in Lake Ontario: Vertical and seasonal distributions during 1982. J. Phycol. 21: 171–175.

    Google Scholar 

  • Fahnenstiel, G. L. & G. J. Carrick, 1991. Phototrophic picoplankton in Lakes Huron and Michigan: Abundance, distribution, composition, and contribution to biomass and production. Can. J. Fish. aquat. Sci. 48: 379–388.

    Google Scholar 

  • Fahnenstiel, G. L., D. G. Redalje & S. E. Lohrenz, 1994. Has the importance of photoautotrophic picoplankton been overestimated. Limnol. Oceanogr. 39: 432–438.

    Google Scholar 

  • Fogg, G. E., 1986. Picoplankton. Proc. R. Soc. Lond., Ser. B: 228: 1–30.

    Google Scholar 

  • Furnas, M. J., 1987. Effects of prescreening on productivity of size-fractionated phytoplankton. Limnol. Oceanogr. 32: 483–491.

    Google Scholar 

  • Glover, H. E. & I. Morris, 1981. Photosynthetic characteristics of coccoid marine cyanobacteria. Arch. Mikrobiol. 129: 42–46.

    Google Scholar 

  • Glover, H. E., M. D. Keller & R. R. L. Guillard, 1986. Light quality and oceanic ultraplankters. Nature 319: 142–143.

    Google Scholar 

  • Happey-Wood, C. M., 1993. Diurnal and seasonal variation in the contributions of autotrophic pico-, nano-, and microplankton to the primary production of an upland lake. J. Plankton Res. 15: 125–159.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology,. Vol II: Introduction to lake biology and the limnoplankton. John Wiley & Sons, Inc., New York. 1115 pp.

    Google Scholar 

  • Li, W. K. W., 1986. Experimental approaches to field measurements: Methods and interpretations. In T. Platt & W. K. W. Li (eds). Can. Bull. Fish. aquat. Sci. 214: 251–286.

  • Nagata, T., 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biawa. Limnol. Oceanogr. 33: 504–517.

    Google Scholar 

  • Obeng-Asamoa, E. K. & B. C. Parker, 1972. Seasonal changes in phytoplankton and water chemistry of Mountain Lake, Virginia. Trans. Am. Microsc. Soc. 91: 363–380.

    Google Scholar 

  • Parker, B. C. & M. J. Parson, 1987. A modified 14C primary productivity method. Va. J. Sci. 38: 214–219.

    Google Scholar 

  • Parker, B. C. & G. L. Samsel, Jr., 1974. A ‘container-effect’ on 14C primary production measurements. Trans. Ky. Acad. Sci. 35: 9–16.

    Google Scholar 

  • Parker, B. C., H. E. Wolfe & R. V. Howard, 1975. On the origin and history of Mountain Lake, Virginia. Southeast. Geol. 16: 213–226.

    Google Scholar 

  • Parson, M. J., 1988. Ammonia uptake by phytoplankton and limnological studies of Mountain Lake, Virginia. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 281 pp.

    Google Scholar 

  • Parson, M. J. & B. C. Parker, 1989a. Mountain Lake, Virginia: An oligotrophic lake under increasing stress. Curr. Pract. envir. Sci. Engin. 4: 1–24.

    Google Scholar 

  • Parson, M. J. & B. C. Parker, 1989b. Algal flora in Mountain Lake, Virginia: Past and present. Castanea 54: 79–89.

    Google Scholar 

  • Parson, M. J. & B. C. Parker, 1993. Seasonal patterns of ammonium (methylamine) uptake by phytoplankton in an oligotrophic lake. Hydrobiologia 250: 105–117.

    Google Scholar 

  • Pick, F. R. & M. Agbeti, 1991. The seasonal dynamics and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int. Revue ges. Hydrobiol. 76: 565–580.

    Google Scholar 

  • Platt, T., D. V. Subba Rao & B. Irwin, 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301: 702–704.

    Google Scholar 

  • Priddle, J. & C. M. Happey-Wood, 1983. Significance of small species of Chlorophyta in freshwater phytoplankton communities with special reference to five Welsh lakes. J. Ecol. 71: 793–811.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, New York. 384 pp.

    Google Scholar 

  • Rushanksy, N. & T. Berman, 1991. Picocyanobacteria and bacteria in Lake Kinneret. Int. Revue ges. Hydrobiol. 76: 555–564.

    Google Scholar 

  • Sieburth, J. McN, V. Smetacek & J. Lent, 1978. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256–1263.

    Google Scholar 

  • Sondergaard, M., 1990. Picophytoplankton in Danish lakes. Verh. int. Ver. Limnol. 24: 609–612.

    Google Scholar 

  • Sondergaard, M., 1991. Phototrophic picoplankton in temperate lakes: Seasonal abundance and importance along atrophic gradient. Int. Revue ges. Hydrobiol. 76: 505–522.

    Google Scholar 

  • Stockner, J. G., 1991. Autotrophic picoplankton in freshwater ecosystems: The view from the summit. Int. Revue ges. Hydrobiol. 76: 483–492.

    Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1991. Autotrophic picoplankton: Community composition, abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int. Revue ges. Hydrobiol. 76: 581–601.

    Google Scholar 

  • Vollenweider, R. A., 1969. A manual on methods for measuring primary production in aquatic ecosystems. Blackwell Scientific Pub., Oxford, 213 pp.

    Google Scholar 

  • Voros, L., P. Gulyas & J. Nemeth, 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Revue ges. Hydrobiol. 76: 617–629.

    Google Scholar 

  • Wehr, J., 1990. Predominance of picoplankton and nanoplankton in eutrophic Calder Lake. Hydrobiologia 203: 35–44.

    Article  Google Scholar 

  • Wehr, J., 1991. Nutrient and grazer-mediated effects on picoplankton and size structure in phytoplankton communities. Int. Revue ges. Hydrobiol. 76: 643–656.

    Google Scholar 

  • Wehr, J., 1993. Effects of experimental manipulations of light and phosphorus supply on competition among picoplankton and nanoplankton in an oligotrophic lake. Can. J. Fish. aquat. Sci. 50: 936–945.

    Google Scholar 

  • Weisse, T., 1988. Dynamics of autotrophic picoplankton in Lake Constance. J. Plankton Res. 10: 1179–1188.

    Google Scholar 

  • Weisse, T. & U. Kenter, 1991. Ecological characteristics of autotrophic picoplankton in a prealpine lake. Int. Revue ges. Hydrobiol. 76: 493–504.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological analyses. Springer-Verlag, New York, 391 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaty, M.H., Parker, B.C. Relative importance of pico-, nano-, and microplankton to the productivity of Mountain Lake, Virginia. Hydrobiologia 331, 121–129 (1996). https://doi.org/10.1007/BF00025413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025413

Key words

Navigation