Skip to main content
Log in

On some general properties of strength criteria

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper the concept of strength criteria is analyzed from a fracture mechanics point of view. A potential function is introduced to examine strength criteria using the results of catastrophe (singularity) theory. Although the diversity of failure behavior is enormous, there exist a few generic elements, so that only some standard modes occur in most cases. Four example problems in fracture mechanics with two and three independent loading parameters are studied in detail. These examples are shown to be representative and the set of failure states in the space of loading parameters generally appears to form a certain sub-space (manifold) which has the same dimension and is called failure domain, so that depending on the loading path, a failure can either occur or not occur at the given point of the failure domain. The brittle strength criteria are shown to depend on the loading history in the general case. The classical concept of a failure criterion and the postulate of convexity of the limiting fracture surface in the space of loading parameters are discussed. It is shown that importation of the convexity postulate from the plasticity theory to the theory of strength is not necessarily legitimate. Finally, two failure criteria are suggested; one characterizing a lower bound for some possibilities of a total failure, and the other guaranteeing the total failure. In the intermediate domain between both criteria, total failure can either occur or not, depending on the loading path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.P. Timoshenko, History of Strength of Materials, Dover, New York (1983).

    Google Scholar 

  2. S. Timoshenko, Strength of Materials, Part II, Advanced Theory and Problems, Van Nostrand, New York (1956).

    Google Scholar 

  3. A. Nadai, Theory of Flow and Fracture of Solids, I, McGraw-Hill, New York (1950).

    Google Scholar 

  4. B. Paul, in Fracture, An Advanced Treatise, Vol. II, Mathematical Fundamentals, H. Liebowitz (ed.), Academic Press, New York (1968) 315–497.

    Google Scholar 

  5. J.C. Jaeger and N.G.W. Cook, Fundamentals of Rock Mechanics, Chapman and Hall, London (1979).

    Google Scholar 

  6. G.P. Cherepanov, Mechanics of Brittle Fracture, McGraw Hill, New York (1979).

    Google Scholar 

  7. J.A. Collins, Failure of Materials in Mechanical Design, Analysis, Prediction, Prevention, J. Wiley and Sons, New York (1981).

    Google Scholar 

  8. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, J. Wiley and Sons, New York (1983).

    Google Scholar 

  9. B.H.G. Brady and E.T. Brown, Rock Mechanics for Underground Mining, George Allen and Unwin, Boston (1985).

    Google Scholar 

  10. J.A. Franklin and M.B. Dusseault, Rock Engineering, McGraw Hill, New York (1989).

    Google Scholar 

  11. E. Fjær, R.M. Holt, P. Horsrud, A.M. Raaen and R. Risnes, Petroleum Related Rock Mechanics, Elsevier, Amsterdam (1992).

    Google Scholar 

  12. A.A. Griffith, in Proceedings of the First International Congress on Applied Mechanics, Delft (1924) 55–63.

  13. G.I. Barenblatt, Journal of Applied Mathematics and Mechanics 28 (1964) 778–792

    Google Scholar 

  14. M.L. Williams, in Thin Shell Structures, Prentice-Hall, New Jersey (1974) 467–482.

    Google Scholar 

  15. M.F. Ashby and C.G. Sammis, Pure and Applied Geophysics 133:3 (1990) 489–521.

    Google Scholar 

  16. L.N. Germanovich and G.P. Cherepanov, Journal of Applied Mathematics and Mechanics, 51:2 (1987) 256–264.

    Google Scholar 

  17. L.N. Germanovich and G.P. Cherepanov, Doklady-Earth Science Sections 294:3 (1988) 32–35.

    Google Scholar 

  18. G.P. Cherepanov and L.N. Germanovich, Journal of the Mechanics and Physics of Solids 41:10 (1993) 1637–1649.

    Google Scholar 

  19. V.I. Arnol'd, Catastrophe Theory, Springer-Verlag, Berlin (1992).

    Google Scholar 

  20. V.I. Arnol'd, in Dynamic System V, Encyclopedia of Mathematical Sciences 5 (1994) 207–264.

  21. V.I. Arnol'd, V.V. Goryunov, O.V. Lyashko and V.A. Vasil'ev, in Dynamic System VIII, Encyclopedia of Mathematical Sciences 39 (1993) 1–235.

  22. V.I. Arnol'd, V.A. Vasil'ev, V.V. Goryunov and O.V. Lyashko, in Dynamic System VI, Encyclopedia of Mathematical Sciences 6 (1993) 1–245.

  23. E.C. Zeeman, Catastrophe Theory, Selected Papers, 1972–1977, Addison-Wesley, Massachusetts (1977).

    Google Scholar 

  24. T. Poston and I. Stewart, Catastrophe Theory and Its Applications, Pitman, London (1978).

    Google Scholar 

  25. R. Gilmore, Catastrophe Theory for Scientists and Engineers, John Wiley, New York (1981).

    Google Scholar 

  26. H. Whitney, Ann. Math., II Ser. 62 (1955) 374–410.

    Google Scholar 

  27. M. Golubitsky and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, vol. I, Springer-Verlag, New York (1985).

    Google Scholar 

  28. J.M.T. Thompson and P.A. Shorrock, Journal of the Mechanics and Physics of Solids 23 (1975) 21–37.

    Google Scholar 

  29. M. Potier-Ferry, International Journal of Engineering Science 23:8 (1985) 821–837.

    Google Scholar 

  30. A. Carpinteri, Journal of the Mechanics and Physics of Solids 37:5 (1989) 567–582.

    Google Scholar 

  31. A. Carpinteri, International Journal of Fracture 44 (1990) 57–69.

    Google Scholar 

  32. Q.S. Nguyen, Journaux Mechanique Theoret. Appl. 3 (1984) 41–62.

    Google Scholar 

  33. J. Sewell, Journal of the Mechanics and Physics of Solids 14 (1966) 203–211.

    Google Scholar 

  34. G.P. Cherepanov (ed.), Fracture: A Topical Encyclopedia of Current Knowledge, Kreiger, Melbourne (1995).

    Google Scholar 

  35. B.A. Khesin, Funct. Anal. Appl. 20 (1986) 250–252.

    Google Scholar 

  36. B.A. Khesin, Journal of Soviet Mathematics 52 (1990) 3279–3304.

    Google Scholar 

  37. R.J. Martin, Journal of Geophysical Research 77 (1972) 1406–1419.

    Google Scholar 

  38. C.G. Sammis and M.F. Ashby, Acta Metallurgica 34 (1986) 511–526.

    Google Scholar 

  39. L.V. Nikitin and V.D. Odintsev, Mechanics of Solids 23:6 (1988) 127–136.

    Google Scholar 

  40. A.V. Dyskin, L.N. Germanovich and K.B. Ustinov, International Journal of Fracture 62 (1993) 307–324.

    Google Scholar 

  41. E. Hoek and Z.T. Bieniawski, International Journal of Fracture Mechanics 1 (1965) 137–155.

    Google Scholar 

  42. R.V. Gol'dshtein, V.M. Ladygin and N.M. Osipenko, Soviet Mining Science 10:1 (1974) 1–9.

    Google Scholar 

  43. R. Wang and J.M. Kemeny, in Fractured and Jointed Rock Masses, U.S. Department of Energy, Lake Tahoe, California (1992) 381–388.

    Google Scholar 

  44. Y. Murakami (ed.), Stress Intensity Factors Handbook, vol. 1. Pergamon, Oxford (1987) 239–240.

    Google Scholar 

  45. C. Fairhurst and N.G.W. Cook, in Proceedings First International Congress of Society for Rock Mechanics, Lisbon, vol. 1 (1966) 687–692.

  46. H. Horii and S. Nemat-Nasser, Philosophical Transacations, Royal Society of London A 319 (1986) 337–374.

    Google Scholar 

  47. A.V. Dyskin and R.L. Salganik, Mechanics of Solids 6 (1987) 165–173.

    Google Scholar 

  48. L.M. Germanovich and A.V. Dyskin, Mechanics of Solids 23:2 (1988) 111–124.

    Google Scholar 

  49. H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research, St Louis, Missouri (1985).

    Google Scholar 

  50. B.K. Norel, in Mechanics of Jointed and Faulted Rock, Rossmanith (ed.), (1990) 987–991.

  51. O.V. Romanov and B.K. Norel, in Proceedings of the 7th International Congress on Rock Mechanics, vol. I, Balkema, Rotterdam (1991) 341–344.

    Google Scholar 

  52. G. Yin, H. Li and X. Xian, in Proceedings of the 29th U.S. Symposium on Rock Mechanics, Balkema, Rotterdam (1988) 95–101.

    Google Scholar 

  53. T.-F. Wong, H. Szeto and J. Zhang, Applied Mechanics Review 45:8 (1992) 281–293.

    Google Scholar 

  54. D.C. Drucker, in Structural Mechanics, Pergamon, New York (1960) 407–455.

    Google Scholar 

  55. I.A. Birger, Mechanics of Solids 12:4 (1977) 124–130.

    Google Scholar 

  56. W.F. Brace and E.G. Bombolakis, Journal of Geophysical Research 68 (1963) 3709–3713.

    Google Scholar 

  57. F. Erdogan and G.C. Sih, ASME Journal of Basic Engineering 85 (1963) 519–525.

    Google Scholar 

  58. M. Barquins, J.-P. Petit, D. Maugis and K. Ghalayini, International Journal of Fracture 54 (1992) 139–163.

    Google Scholar 

  59. S. Melin, ASME Journal of Applied Mechanics 61 (1993) 467–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germanovich, L.N., Cherepanov, G.P. On some general properties of strength criteria. Int J Fract 71, 37–56 (1995). https://doi.org/10.1007/BF00019340

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019340

Keywords

Navigation