Skip to main content
Log in

Cytokinin metabolism: implications for regulation of plant growth and development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Banowetz GM: The effects of endogenous cytokinin content on benzyladenine-enhanced nitrate reductase induction. Physiol Plant 86: 341–348 (1992).

    Article  Google Scholar 

  2. Binns AN, Labriola J, Black RC: Initiation of auxin autonomy in Nicotiana glutinosa cells by the cytokinin-biosynthesis gene from Agrobacterium tumefaciens. Planta 171: 539–548 (1987).

    Google Scholar 

  3. Brinegar AC, Blumenthal S, Cooper G: Photoaffinity labeling of mung bean mitochondrial proteins using (3H)-2-azido-6-benzylaminopurine. In: Kaminek M, Mok DWS, Zazimalova E (eds), Physiology and Biochemistry of Cytokinins in Plants, pp. 301–307. SPB Academic Publishers, The Hague (1992).

    Google Scholar 

  4. Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K: Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 262: 1051–1054 (1993).

    PubMed  Google Scholar 

  5. Burch LR, Horgan R: The purification of cytokinin oxidase from Zea mays kernels. Phytochemistry 28: 1313–1319 (1989).

    Article  Google Scholar 

  6. Burch LR, Horgan R: Cytokinin oxidase and the degradative metabolism of cytokinins. In: Kaminek M, Mok DWS, Zazimalova E (eds), Physiology and Biochemistry of Cytokinins in Plant, pp. 29–32, SPB Academic Publishers, The Hague (1992).

    Google Scholar 

  7. Campos N, Bako L, Feldwisch J, Schell J, Palme K: A protein from maize labeled with azido-IAA has novel β-glucosidase activity. Plant J 2: 675–684 (1992).

    Google Scholar 

  8. Chatfield JM, Armstrong DJ: Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv. Great Northern. Plant Physiol 80: 493–499 (1986).

    Google Scholar 

  9. Chaudhury AM, Letham S, Craig S, Dennis ES: amp1 — a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 4: 907–916 (1993).

    Article  Google Scholar 

  10. Chen CM: Cytokinin biosynthesis in cell-free systems. In: Wareing PF (ed.), Plant Growth Substances, pp. 155–164. Academic Press, London (1982).

    Google Scholar 

  11. Chen CM, Melitz DK: Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures, FEBS Lett 107: 15–20 (1979).

    Article  PubMed  Google Scholar 

  12. Claes B, Smalle J, Dekeyser R, VanMontagu M, Caplan A: Organ-dependent regulation of a plant promoter isolated from rice by ‘promoter-trapping’ in tobacco. Plant J 1: 15–26 (1991).

    Article  PubMed  Google Scholar 

  13. Conn EE: β-Glycosidases in plants: substrate specificity. In: Essen A. (ed.), β-Glucosidases: Biochemistry and Molecular Biology. ACS Symposium Series 533, pp. 15–26. Maple Press, York, PA (1993).

    Google Scholar 

  14. Cowly DE, Duke CC, Liepa AJ, Mac Leod JK, Letham DS: The structure and synthesis of cytokinin metabolites. I. The 7- and 9-β-glucofuranosides and pyranosides of zeatin and 6-benzylaminopurine. Aust J Chem 31: 1095–1111 (1978).

    Google Scholar 

  15. Dehio C, deBruijn FJ: The early nodulation gene SrEnod2 from Sesbania rostrata is inducible by cytokinin. Plant J 2: 117–128 (1992).

    PubMed  Google Scholar 

  16. Dixon SC, Martin RC, Mok MC, Shaw G, Mok DWS: Zeatin glycosylation enzymes in Phaseolus: isolation of O-glucosyltransferase from P. lunatus and comparison to O-xylosyltransferase from P vulgaris. Plant Physiol 90: 1316–1321 (1989).

    Google Scholar 

  17. Dominov JA, Stenzler L, Lee S, Schwarz JJ, Leisner S, Howell SH: Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation. Plant Cell 4: 451–461 (1992).

    Article  PubMed  Google Scholar 

  18. Doree M, Guern J: Short-term metabolism of some exogenous cytokinins in Acer pseudoplatanus cells. Biochim Biophys Acta 304: 611–622 (1993).

    Google Scholar 

  19. Engelbrecht L: Cytokinins in leaf-cuttings of Phaseolus vulgaris L. during their development. Biochem Physiol Pflanzen 163: 335–343 (1972).

    Google Scholar 

  20. Entsch B, Parker CW, Letham DS, Summons RE: Preparation and characterization, using high performance liquid chromatography, of an enzyme forming glucosides of cytokinins. Biochim Biophys Acta 570: 124–139 (1979).

    PubMed  Google Scholar 

  21. Entsch B, Letham DS, Parker CW, Summons RE, Gollnow BI: Metabolites of cytokinins. In: Skoog F (ed), Plant Growth Substances 1979, pp. 109–118. Springer-Verlag, Berlin (1980).

    Google Scholar 

  22. Entsch B, Parker CW, Letham DS: An enzyme from lupine seeds forming alanine derivatives of cytokinins. Phytochemistry 22: 375–381 (1983).

    Article  Google Scholar 

  23. Erion JL, Fox JE: Purification and properties of a protein which binds cytokinin-active 6-substituted purines. Plant Physiol 67: 156–162 (1981).

    Google Scholar 

  24. Esen A, Cokmus C: Maize genotypes classified as null at the Glu locus have β-glucosidase activity and immunoreactive protein. Biochem Genet 28: 319–336 (1990).

    PubMed  Google Scholar 

  25. Esen A: Purification and partial characterization of maize (Zea mays L.) β-glucosidase. Plant Physiol 98: 174–182 (1992).

    Google Scholar 

  26. Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A: The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10: 2889–2895 (1991).

    PubMed  Google Scholar 

  27. Estruch JJ, Prinsen E, VanOnckelen H, Schell J, Spena A: Viviparous leaves produced by somatic activation of an inactive cytokinin-synthesizing gene. Science 254: 1364–1367 (1991).

    Google Scholar 

  28. Estruch JJ, Granell A, Hansen G, Prinsen E, Redig P, VanOnckelen H, Schwarz-Sommer Z, Sommer H, Spena A: Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant J 4: 379–384 (1993).

    Article  PubMed  Google Scholar 

  29. Firn RD: Too many binding proteins, not enough receptors? In: Klämbt D (ed), Plant Hormone Receptors. pp 1–11. NATO ASI Series H: Cell Biology Vol. 10. Springer-Verlag, Berlin/Heidelberg (1987).

    Google Scholar 

  30. Fladung M: Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breed 104: 295–304 (1990).

    Google Scholar 

  31. Fox JE, Cornette J, Deleuze G, Dyson W, Giersak G, Niu P, Zapata J, McChesney J: The formation, isolation and biological activity of a cytokinin 7-glucoside. Plant Physiol 52: 627–632 (1973).

    Google Scholar 

  32. Haberlandt G: Zur Physiologie der Zellteilungen. Sitzungsber K Preuss Akad Wiss: 318–345 (1913).

  33. Hall RH: N6-(Δ2-isopentenyl) adenosine: chemical reactions, biosynthesis, metabolism and significance to the structure and function of tRNA. In: Davidson JN, Cohn WE (eds) Progress in Nucleic Acid Research and Molecular Biology, Vol 10, pp. 57–86. Academic Press, New York (1970).

    Google Scholar 

  34. Hamaguchi N, Iwamura H, Fujita T: Fluorescent anticytokinins as a probe for binding. Isolation of cytokinin-binding proteins from the soluble fraction and identification of a cytokinin-binding site on ribosomes of tobacco (Nicotiana tabacum cultivar Wisconsin No. 38) callus cells. Eur J Biochem 153: 565–572 (1985).

    PubMed  Google Scholar 

  35. Hansen CE, Meins FJr, Milani A: Clonal and physi ological variation in the cytokinin content of tobacco cell lines differing in cytokinin requirements and capacity for neoplastic growth. Differentiation 29: 1–6 (1985).

    Google Scholar 

  36. Henson I.E., Wareing PF: Cytokinins in Xanthium strumarium L.: Distribution in the plant and production in the root system. J Exp Bot 27: 1268–1278 (1976).

    Google Scholar 

  37. Hepler PK, Wayne RO: Calcium and plant development. Ann Rev Plant Physiol 36: 397–439 (1985).

    Google Scholar 

  38. Ivanova M, Todorov IT, Atanassova L, Dewitte W, VanOnckelen HA: Co-localization of cytokinins with proteins related to cell proliferation in developing somatic embryos of Dactylis glomerata L. J Exp Bot 45: 1009–1017 (1994).

    Google Scholar 

  39. Jones RJ, Schreiber BM, McNeil K, Brenner ML, Foxon G: Cytokinin levels and oxidase activity during maize kernel development. In: Kaminek M, Mok DWS, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 235–239. SPB Academic Publishers, The Hague (1992).

    Google Scholar 

  40. Kaminek M, Armstrong DJ: Genotypic variation in cytokinin oxidase from Phaseolus callus cultures. Plant Physiol 93: 1530–1538 (1990).

    Google Scholar 

  41. Kares C, Prinsen E, VanOnckelen H, Otten I: IAA synthesis and root induction with iaa genes under heat shock promoter control. Plant Mol Biol 15: 225–236 (1990).

    PubMed  Google Scholar 

  42. Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL. The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Devel 1: 86–96 (1987).

    Google Scholar 

  43. Kobayashi K, Zbell B, Reinert J: A high affinity binding site for cytokinin to a particulate fraction in carrot suspension cells. Protoplasma 106: 145–155 (1981).

    Google Scholar 

  44. Laloue M, Fox JE. Cytokinin oxidase from wheat: partial purification and general properties. Plant Physiol 90: 899–906 (1989).

    Google Scholar 

  45. Lee YH, Mok MO, Mok DWS, Griffin DA, Shaw G: Cytokinin metabolism in Phaseolus embryos. Plant Physiol. 77: 635–641 (1985).

    Google Scholar 

  46. Letham DS: Zeatin, a factor inducing cell division from Zea mays, Life Sci 8: 569–573 (1963).

    Google Scholar 

  47. Letham DS, Palni LMS: The biosynthesis and metabolism of cytokinins. Ann Rev Plant Physiol 34: 163–197 (1983).

    Google Scholar 

  48. Li Y, Shi X, Strabala TJ, Hagen G, Guilfoyle TJ: Transgenic tobacco plants that overproduce cytokinins show increased tolerance to exogenous auxin and auxin transport inhibitors. Plant Sci 100: 9–14 (1994).

    Google Scholar 

  49. Martin RC, Martin RR, Mok MC, Mok DWS: A monoclonal antibody specific to zeatin O-glycosyltransferases of Phaseolus. Plant Physiol 94: 1290–1294 (1990).

    Google Scholar 

  50. Martin RC, Mok MC, Mok DWS: Cytolocalization of zeatin O-xylosyltransferase in Phaseolus. Proc Natl Acad Sci USA 90: 953–957 (1993).

    PubMed  Google Scholar 

  51. McGaw BA, Horgan R: Cytokinin oxidase from Zea mays kernels and Vicia rosea crown-gall tissue. Planta 159: 30–37 (1983).

    Google Scholar 

  52. McGaw BA, Heald JK, Horgan R: Dihydrozeatin metabolism in radish seedlings. Phytochemistry 23: 1373–1377 (1984).

    Google Scholar 

  53. McGaw BA, Horgan R, Heald JK, Wullems GJ, Schilperoort RA. Mass-spectrometric quantitation of cytokinins in tobacco crown-gall tumours by mutated octopine Ti plasmids of Agrobacterium tumefaciens. Planta 176: 230–234 (1988).

    Google Scholar 

  54. Medford JI, Horgan R, El-Sawi Z, Klee HJ: Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1: 403–413 (1989).

    PubMed  Google Scholar 

  55. Miernyk JA: Abscisic acid inhibition of kinetin nucleotide formation in germinating lettuce seeds. Physiol Plant 45: 63–66 (1979).

    Google Scholar 

  56. Miller CO, Skoog F, Saltza MHvon, Strong FM: Kinetin, a cell division factor from deosyribonucleic acid. J Am Chem Soc 77: 1329–1334 (1955).

    Google Scholar 

  57. Miller CO, Skoog F, Okomura FS, vonSaltza MH, Strong FM: Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78: 1345–1350 (1956).

    Google Scholar 

  58. Mok MC, Mok DWS, Marsden KE, Shaw G: The biological activity and metabolism of a novel cytokinin metabolite, O-xylosylzeatin, in callus tissue of Phaseolus vulgaris and P. lunatus. J Plant Physiol 130: 423–431 (1987).

    Google Scholar 

  59. Mok DWS, Mok MC, Martin RC, Bassil NV, Lightfoot DA: Zeatin metabolism in Phaseolus: enzymes and genes. In: Karsen CM, vanLoon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation. pp. 597–606, Kluwer Academic Publishers Dordrecht (1992).

    Google Scholar 

  60. Mok DWS, Mok MC, Martin RC, Bassil N, Shaw G: Immuno-analysis of zeatin metabolic enzymes of Phaseolus. In: Kaminek M, Mok DWS, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 17–23. SPB Academic Publishers, The Hague (1992).

    Google Scholar 

  61. Montague MI, Enns RK, Siegel NZ, Jaworski EG: Inhibition of 2,4-dichlorophenoxyacetic acid conjugation to amino acids by treatment of cultured soybean cells with cytokinins. Plant Physiol 67: 701–704 (1981).

    Google Scholar 

  62. Moore FH: A cytokinin-binding protein from wheat germ. Isolation by affinity chromatography and properties. Plant Physiol 64: 594–599 (1979).

    Google Scholar 

  63. Motyka V, Kaminek M: Characterization of cytokinin oxidase from tobacco and poplar callus culturs. In: Kaminek M, Mok DWS, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 33–39 SPB Academic Publishers, The Hague (1992).

    Google Scholar 

  64. Nandi SK, DeKlerk GJM, Parker CW, Palni LMS: Endogenous cytokinin levels and metabolism of zeatin riboside in genetic tumour tissues and non-tumorous tissues of tobacco. Physiol Plant 78: 197–204 (1990).

    Google Scholar 

  65. Olsen KW, Zaluzec EJ, Zaluzec MM, Fernandez EJ, Pavkovic SF: Crystallographic and binding studies on a cytokinin peanut agglutinin complex. Biophys J 59: 296A (1991).

    Google Scholar 

  66. Paces V, Werstiuk E, Hall RH: Conversion of N6-(Δ2-isopentenyl) adenosine to adenosine by enzyme activity in tobacco tissue. Plant Physiol 48: 775–778 (1971).

    Google Scholar 

  67. Paces V, Kaminek M: Effect of ribosylzeatin on the enzymatic degradation of N6-(Δ2-isopentenyl) adenosine. Nucl Acids Res 3: 2309–2314 (1976).

    PubMed  Google Scholar 

  68. Palmer MV, Horgan R, Wareing PF. Cytokinin metabolism in Phaseolus vulgaris L. I. Variations in cytokinin levels in leaves of decapitated plants in relation to lateral bud outgrowth. J Exp Bot 32: 1231–1241 (1981).

    Google Scholar 

  69. Palmer MV, Palni LMS: Substrate effects on cytokinin metabolism in soybean callus tissue. J Plant Physiol 126: 365–371 (1987).

    Google Scholar 

  70. Palni LMS, Burch L, Horgan R: The effect of auxin concentration on cytokinin stability and metabolism. Planta 174: 231–234 (1988).

    Google Scholar 

  71. Parker CW, Letham DS: Regulators of cell division in plant tissues. XVI. Mctabolism of zeatin by radish cotyledons and hypocotyls. Planta 114: 199–218 (1973).

    Google Scholar 

  72. Parker CW, Wilson MM, Letham DS, Cowley DE, MacLeod JK: The glucosylation of cytokinins. Biochem Biophys Res Commun 55: 1370–1376 (1973).

    PubMed  Google Scholar 

  73. Parker CW, Letham DS: Regulators of cell division in plant tissues. XVIII. Metabolism of zeatin in Zea mays seedlings. Planta 115: 337–344 (1974).

    Google Scholar 

  74. Parker CW, Entsch B, Letham DS: Inhibitors of two enzymes which metabolize cytokinins. Phytochemistry 25: 303–310 (1986).

    Article  Google Scholar 

  75. Polya GM, Davis AW: Properties of a high affinity cytokinin-binding protein from wheat germ. Planta 139: 139–147 (1978).

    Google Scholar 

  76. Reinecke DM, Brenner ML, Rubenstein I: Cytokinin biosynthesis in developing Zea mays kernels. Plant Physiol 99 (Suppl): 66 (1992).

    Google Scholar 

  77. Roberts DD, Goldstein IJ: Adenine binding sites of the lectin from lima beans (Phaseolus lunatus). J Biol Chem 258: 13820–13824 (1983).

    PubMed  Google Scholar 

  78. Romano C, Hein M, Klee H: Inactivation of auxin in tobacco transformed with the indole acetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Devel 5: 438–446 (1991).

    PubMed  Google Scholar 

  79. Romanov GA, Taran VY, Chvojka L, Kulaeva ON: Receptor-like cytokinin-binding proteins(s) from barley leaves. J Plant Growth Regul 7: 1–7 (1988).

    Google Scholar 

  80. Romanov GA, Taran VY, Venis MA: Cytokinin-binding protein from maize shoots. J Plant Physiol 136: 208–212 (1990).

    Google Scholar 

  81. Sano H, Youssefian S: Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci USA 91: 2582–2586 (1994).

    PubMed  Google Scholar 

  82. Schmitt JM, Piepenbrock M: Regulation of phosphoenolpyruvate carboxylase and crassulacean acid metabolism induction in Mesembryanthenum crystallinum L. by cytokinin. Modulation of leaf gene expression by roots? Plant Physiol 99: 1664–1669 (1992).

    Google Scholar 

  83. Schmülling T, Schell J, Spena A: Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 2621–2629 (1988).

  84. Schmülling T, Beinsberger S, DeGreef J, Schell J, VanOnckelen H, Spena A: Construction of heat-inducible chimaeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 2: 401–406 (1989).

    Article  Google Scholar 

  85. Schmülling T, Fladung M, Grossman K, Schell J: Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 3: 371–382 (1993).

    Google Scholar 

  86. Singh S, Palni LMS, Letham DS: Cytokinin biochemistry in relation to leaf senescence. V. Endogenous cytokinin levels and metabolism of zeatin riboside in leaf discs from green and senescent tobacco (Nicotiana rustica) leaves. J Plant Physiol 139: 279–283 (1992).

    Google Scholar 

  87. Skoog F, Miller CO: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11: 118–130 (1957).

    Google Scholar 

  88. Skoog F, Armstrong DJ: Cytokinins. Ann Rev Plant Physiol 21: 359–384 (1970).

    Article  Google Scholar 

  89. Smart C, Scofield S, Bevan M, Dyer T: Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3: 647–656 (1991).

    Article  PubMed  Google Scholar 

  90. Smigocki AC: Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol 16: 105–115 (1991).

    PubMed  Google Scholar 

  91. Smigocki AC, Owens LD: Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85: 5131–5135 (1988).

    Google Scholar 

  92. Smith AR, VanStaden J: Changes in endogenous cytokinin levels in kernels of Zea mays L. during imbidition and germination. J Exp Bot 29: 1067–1075 (1978).

    Google Scholar 

  93. Sondheimer E, Tzou D: The metabolism of 8-14C-zeatin in bean axes. Plant Physiol 47: 516–520 (1971).

    Google Scholar 

  94. Sossountzov L, Maldiney R, Sotta B, Sabbagh I, Habricot Y, Bonnet M, Miginiac E: Immunocytochemical localization of cytokinins in Craigella tomato and a side-shootless mutant. Planta 175: 291–304 (1988).

    Google Scholar 

  95. Spena A, Aalen RB, Schulze SC: Cell autonomous behavior of the rolC gene of Agrobacterium rhizogenes during leaf development: a visual assay for transposon excision in transgenic plants. Plant Cell 1: 1157–1164 (1989).

    Article  PubMed  Google Scholar 

  96. Spena A, Prinsen E, Fladung M, Schulze SC, VanOnckelen H: The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants. Mol Gen Genet 227: 205–212 (1991).

    Article  PubMed  Google Scholar 

  97. Stuber CW, Goodmann MM, Johnson FM: Genetic control and racial variation of β-glucosidase isozymes in maize (Zea mays L.). Biochem Genet 15: 383–394 (1977).

    PubMed  Google Scholar 

  98. Sugiharto B, Burnell JN, Sugiyama T: Cytokinin is required to induce the nitrogen-dependent accumulation of mRNAs for phosphoenolpyruvate carboxylase and carbonic anhydrase in detached maize leaves. Plant Physiol 100: 153–156 (1992).

    Google Scholar 

  99. Takegami T, Yoshida K: Isolation and purification of cytokinin binding protein from tobacco leaves by affinity column chromatography. Biochem Biophys Res Commun 67: 782–789 (1975).

    PubMed  Google Scholar 

  100. Taran VY, Romanov GA, Venis MA: Purification of soluble zeatin-binding proteins from maize shoots. In: Kaminek M, Mok DWS, Zazimalova E (eds) Physiology and Biochemistry of Cytokinins in Plants, pp. 165–167. SPB Academic Publishers, The Hague (1992).

    Google Scholar 

  101. Taya T, Tanaka Y, Nishimura S: 5′ AMP is a direct precursor of cytokinin in Dictyostelium discoideum. Nature 271: 545–547 (1978).

    PubMed  Google Scholar 

  102. Terrine C, Laloue M: Kinetics of N6-(Δ2-isopentenyl) adenosine degradation in tobacco cells. Plant Physiol 65: 1090–1095 (1980).

    Google Scholar 

  103. Trewavas AJ: Growth substances in context: a decade of sensitivity. Biochem Soc Transact 20: 102–108 (1992).

    Google Scholar 

  104. Turner JE, Mok MC, Mok DWS: Zeatin metabolism in fruits of Phaseolus: comparison between embryos, seedcoat, and pod tissue. Plant Physiol 79: 321–322 (1985).

    Google Scholar 

  105. Turner JE, Mok DWS, Mok MC, Shaw G: Isolation and partial purification of an enzyme catalyzing the formation of O-xylosylzeatin in Phaseolus vulgaris embryos. Proc Natl Acad Sci USA 84: 3714–3717 (1987).

    Google Scholar 

  106. VanStaden J, Dimalla GG: Endogenous cytokinins and the breaking of dormancy and apical dominance in potato tubers. J Exp Bot 29: 1077–1084 (1978).

    Google Scholar 

  107. VanStaden J, Smith AR: The synthesis of cytokinins in excised roots of maize and tomato under aseptic conditions. Ann Bot 42: 751–753 (1978).

    Google Scholar 

  108. VanStaden J, Mooney PA: The effect of cytokinin preconditioning on the metabolism of adenine derivatives in soybean callus. J Plant Physiol 133: 466–469 (1988).

    Google Scholar 

  109. Wang TL, Thompson AG, Horgan R: A cytokinin glucoside from leaves of Phaseolus vulgaris L.. Planta 135: 285–288 (1977).

    Google Scholar 

  110. Whenam RJ: Effect of systemic tobacco mosaic virus infection on endogenous cytokinin concentration in tobacco (Nicotiana tabacum L.) leaves: consequences for the control of resistance and symptom development. Physiol Mol Plant Pathol 35: 85–95 (1989).

    Google Scholar 

  111. Whitty CD, Hall RH: A cytokinin oxidase in Zea mays. Can J Biochem 52: 781–799 (1974).

    Google Scholar 

  112. Wyndaele R, Christiansen J, Horseele R, Rudelsheim P, VanOnckelen H: Functional correlation between endogenous phytohormone levels and hormone autotrophy of transformed and habituated soybean cell lines. Plant Cell Physiol 29: 1095–1101 (1988).

    Google Scholar 

  113. Zhang R, Letham DS, Wong OC, Nooden LD, Parker CW: Cytokinin biochemistry in relation to leaf senescence. II. The metabolism of benzylaminopurine in soybean leaves and the inhibition of conjugation. Plant Physiol 83: 334–340 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzobohatý, B., Moore, I. & Palme, K. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol 26, 1483–1497 (1994). https://doi.org/10.1007/BF00016486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016486

Key words

Navigation