Skip to main content

Human Immunodeficiency Virus Reverse Transcriptase

  • Chapter
  • First Online:
Viral Genome Replication

Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is an essential enzyme for HIV replication which converts the single-stranded viral RNA into a double-stranded DNA, suitable for integration into the host cell genome (Telesnitsky and Goff 1997). Heterodimeric p66/p51 HIV-1 RT (Fig. 19.1) has both synthetic (DNA polymerase) and degradative activities (ribonuclease H or RNase H), located at the N- and C-terminus of its p66 subunit, respectively. During HIV-1 replication, a complicated series of protein–protein and protein–nucleic acid interactions occur, each with the potential to be targeted by a small-molecule antagonist which might be developed into a potent therapeutic agent. Given the problem of increasing resistance against anti-HIV drugs currently in clinical use and the continued need to identify new drug targets, enzymatic activities and interactions, protein folding, and disruption of nucleic-acid structure are areas where detailed studies promise to unveil novel approaches with the potential for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiyar, A., D. Cobrinik, et al. (1992). “Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription.” J Virol 66(4): 2464–72.

    PubMed  CAS  Google Scholar 

  • Aiyar, A., Z. Ge, et al. (1994). “A specific orientation of RNA secondary structures is required for initiation of reverse transcription.” J Virol 68(2): 611–8.

    PubMed  CAS  Google Scholar 

  • Amacker, M. and U. Hubscher (1998). “Chimeric HIV-1 and feline immunodeficiency virus reverse transcriptases: critical role of the p51 subunit in the structural integrity of heterodimeric lentiviral DNA polymerases.” J Mol Biol 278(4): 757–65.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, E. S., R. E. Jeeninga, et al. (2003). “Dimerization and template switching in the 5' untranslated region between various subtypes of human immunodeficiency virus type 1.” J Virol 77(5): 3020–30.

    Article  PubMed  CAS  Google Scholar 

  • Ao, Z., X. Yao, et al. (2004). “Assessment of the role of the central DNA flap in human immunodeficiency virus type 1 replication by using a single-cycle replication system.” J Virol 78(6): 3170–7.

    Article  PubMed  CAS  Google Scholar 

  • Arhel, N., S. Munier, et al. (2006). “Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type.” J Virol 80(20): 10262–9.

    Article  PubMed  CAS  Google Scholar 

  • Arhel, N. J., S. Souquere-Besse, et al. (2007). “HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore.” Embo J 26(12): 3025–37.

    Article  PubMed  CAS  Google Scholar 

  • Arts, E. J., M. Ghosh, et al. (1996a). “Restoration of tRNA3Lys-primed(-)-strand DNA synthesis to an HIV-1 reverse transcriptase mutant with extended tRNAs. Implications for retroviral replication.” J Biol Chem 271(15): 9054–61.

    Article  PubMed  CAS  Google Scholar 

  • Arts, E. J., S. R. Stetor, et al. (1996b). “Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases.” Proc Natl Acad Sci USA 93(19): 10063–8.

    Article  PubMed  CAS  Google Scholar 

  • Bahar, I., B. Erman, et al. (1999). “Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function.” J Mol Biol 285(3): 1023–37.

    Article  PubMed  CAS  Google Scholar 

  • Bajji, A. C., M. Sundaram, et al. (2002). “An RNA complex of the HIV-1 A-loop and tRNA(Lys,3) is stabilized by nucleoside modifications.” J Am Chem Soc 124(48): 14302–3.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Nahum, G., V. Epshtein, et al. (2005). “A ratchet mechanism of transcription elongation and its control.” Cell 120(2): 183–93.

    Article  PubMed  CAS  Google Scholar 

  • Barat, C., O. Schatz, et al. (1993). “Analysis of the interactions of HIV1 replication primer tRNA(Lys,3) with nucleocapsid protein and reverse transcriptase.” J Mol Biol 231(2): 185–90.

    Article  PubMed  CAS  Google Scholar 

  • Barraud, P., C. Gaudin, et al. (2007). “New insights into the formation of HIV-1 reverse transcription initiation complex.” Biochimie 89(10): 1204–10.

    Google Scholar 

  • Beard, W. A., S. J. Stahl, et al. (1994). “Structure/function studies of human immunodeficiency virus type 1 reverse transcriptase. Alanine scanning mutagenesis of an alpha-helix in the thumb subdomain.” J Biol Chem 269(45): 28091–7.

    PubMed  CAS  Google Scholar 

  • Bebenek, K., W. A. Beard, et al. (1995). “Reduced frameshift fidelity and processivity of HIV-1 reverse transcriptase mutants containing alanine substitutions in helix H of the thumb subdomain.” J Biol Chem 270(33): 19516–23.

    Article  PubMed  CAS  Google Scholar 

  • Bebenek, K., W. A. Beard, et al. (1997). “A minor groove binding track in reverse transcriptase.” Nat Struct Biol 4(3): 194–7.

    Article  PubMed  CAS  Google Scholar 

  • Becerra, S. P., A. Kumar, et al. (1991). “Protein-protein interactions of HIV-1 reverse transcriptase: implication of central and C-terminal regions in subunit binding.” Biochemistry 30(50): 11707–19.

    Article  PubMed  CAS  Google Scholar 

  • Beerens, N. and B. Berkhout (2002). “The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription.” J Virol 76(5): 2329–39.

    Article  PubMed  CAS  Google Scholar 

  • Beerens, N., F. Groot, et al. (2001). “Initiation of HIV-1 reverse transcription is regulated by a primer activation signal.” J Biol Chem 276(33): 31247–56.

    Article  PubMed  CAS  Google Scholar 

  • Beese, L. S. and T. A. Steitz (1991). “Structural basis for the 3Ęą-5Ęą exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism.” Embo J 10(1): 25–33.

    PubMed  CAS  Google Scholar 

  • Ben-Artzi, H., E. Zeelon, et al. (1992a). “Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase.” Proc Natl Acad Sci USA 89(3): 927–31.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Artzi, H., E. Zeelon, et al. (1992b). “Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases.” Nucleic Acids Res 20(19): 5115–8.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Artzi, H., J. Shemesh, et al. (1996). “Molecular analysis of the second template switch during reverse transcription of the HIV RNA template.” Biochemistry 35(32): 10549–57.

    Google Scholar 

  • Berkhout, B., J. van Wamel, et al. (1995). “Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions.” J Mol Biol 252(1): 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Blain, S. W. and S. P. Goff (1993). “Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities.” J Biol Chem 268(31): 23585–92.

    PubMed  CAS  Google Scholar 

  • Borroto-Esoda, K. and L. R. Boone (1991). “Equine infectious anemia virus and human immunodeficiency virus DNA synthesis in vitro: characterization of the endogenous reverse transcriptase reaction.” J Virol 65(4): 1952–9.

    PubMed  CAS  Google Scholar 

  • Boyer, P. L., A. L. Ferris, et al. (1994). “Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase.” J Mol Biol 243(3): 472–83.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P. L., A. L. Ferris, et al. (1992). “Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1.” J Virol 66(2): 1031–9.

    PubMed  CAS  Google Scholar 

  • Brautigam, C. A. and T. A. Steitz (1998). “Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes.” Curr Opin Struct Biol 8(1): 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Budihas, S. R., I. Gorshkova, et al. (2005). “Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones.” Nucleic Acids Res 33(4): 1249–56.

    Article  PubMed  CAS  Google Scholar 

  • Cabodevilla, J. F., L. Odriozola, et al. (2001). “Factors affecting the dimerization of the p66 form of HIV-1 reverse transcriptase.” Eur J Biochem 268(5): 1163–72.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, A. T., P. A. Fernandes, et al. (2006). “Molecular dynamics model of unliganded HIV-1 reverse transcriptase.” Med Chem 2(5): 491–8.

    Article  PubMed  CAS  Google Scholar 

  • Cases-Gonzalez, C. E., M. Gutierrez-Rivas, et al. (2000). “Coupling ribose selection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1 reverse transcriptase.” J Biol Chem 275(26): 19759–67.

    Article  PubMed  CAS  Google Scholar 

  • Charneau, P., M. Alizon, et al. (1992). “A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication.” J Virol 66(5): 2814–20.

    PubMed  CAS  Google Scholar 

  • Charneau, P. and F. Clavel (1991). “A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract.” J Virol 65(5): 2415–21.

    PubMed  CAS  Google Scholar 

  • Charneau, P., G. Mirambeau, et al. (1994). “HIV-1 reverse transcription. A termination step at the center of the genome.” J Mol Biol 241(5): 651–62.

    Article  PubMed  CAS  Google Scholar 

  • Cobrinik, D., L. Soskey, et al. (1988). “A retroviral RNA secondary structure required for efficient initiation of reverse transcription.” J Virol 62(10): 3622–30.

    PubMed  CAS  Google Scholar 

  • Cowan, J. A., T. Ohyama, et al. (2000). “Metal-ion stoichiometry of the HIV-1 RT ribonuclease H domain: evidence for two mutually exclusive sites leads to new mechanistic insights on metal-mediated hydrolysis in nucleic acid biochemistry.” J Biol Inorg Chem 5(1): 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg, M. E. and S. J. Benkovic (1991). “Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant.” Biochemistry 30(20): 4835–43.

    Article  PubMed  CAS  Google Scholar 

  • Dardalhon, V., B. Herpers, et al. (2001). “Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap.” Gene Ther 8(3): 190–8.

    Article  PubMed  CAS  Google Scholar 

  • Das, K., S. G. Sarafianos, et al. (2007). “Crystal structures of clinically relevant Lys103Asn/ Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097.” J Mol Biol 365(1): 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Dash, C., T. S. Fisher, et al. (2006a). “Examining interactions of HIV-1 reverse transcriptase with single-stranded template nucleotides by nucleoside analog interference.” J Biol Chem 281(38): 27873–81.

    Article  PubMed  CAS  Google Scholar 

  • Dash, C., J. P. Marino, et al. (2006b). “Examining Ty3 polypurine tract structure and function by nucleoside analog interference.” J Biol Chem 281(5): 2773–83.

    Article  PubMed  CAS  Google Scholar 

  • Dash, C., J. W. Rausch, et al. (2004a). “Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3Ęą polypurine tract.” Nucleic Acids Res 32(4): 1539–47.

    Article  PubMed  CAS  Google Scholar 

  • Dash, C., H. Y. Yi-Brunozzi, et al. (2004b). “Two modes of HIV-1 polypurine tract cleavage are affected by introducing locked nucleic acid analogs into the (-) DNA template.” J Biol Chem 279(35): 37095–102.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. F., 2nd, Z. Hostomska, et al. (1991). “Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase.” Science 252(5002): 88–95.

    Article  PubMed  CAS  Google Scholar 

  • De Rijck, J. and Z. Debyser (2006). “The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication.” Biochem Biophys Res Commun 349(3): 1100–10.

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire, V., P. S. Freemont, et al. (1988). “Genetic and crystallographic studies of the 3Ęą,5Ęą-exonucleolytic site of DNA polymerase I.” Science 240(4849): 199–201.

    Article  PubMed  CAS  Google Scholar 

  • DeStefano, J. J. (1995). “The orientation of binding of human immunodeficiency virus reverse transcriptase on nucleic acid hybrids.” Nucleic Acids Res 23(19): 3901–8.

    Article  PubMed  CAS  Google Scholar 

  • DeStefano, J. J., R. A. Bambara, et al. (1993). “Parameters that influence the binding of human immunodeficiency virus reverse transcriptase to nucleic acid structures.” Biochemistry 32(27): 6908–15.

    Article  PubMed  CAS  Google Scholar 

  • DeStefano, J. J., J. V. Cristofaro, et al. (2001). “Physical mapping of HIV reverse transcriptase to the 5Ęą end of RNA primers.” J Biol Chem 276(35): 32515–21.

    Article  PubMed  CAS  Google Scholar 

  • di Marzo Veronese, F., T. D. Copeland, et al. (1986). “Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV.” Science 231(4743): 1289–91.

    Article  PubMed  Google Scholar 

  • Ding, J., K. Das, et al. (1998). “Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution.” J Mol Biol 284(4): 1095–111.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J., K. Das, et al. (1995). “Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor alpha-APA R 95845 at 2.8 A resolution.” Structure 3(4): 365–79.

    Article  PubMed  CAS  Google Scholar 

  • Divita, G., T. Restle, et al. (1993). “Characterization of the dimerization process of HIV-1 reverse transcriptase heterodimer using intrinsic protein fluorescence.” FEBS Lett 324(2): 153–8.

    Article  PubMed  CAS  Google Scholar 

  • Divita, G., K. Rittinger, et al. (1995). “Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process.” J Mol Biol 245(5): 508–21.

    Article  PubMed  CAS  Google Scholar 

  • Doublie, S., M. R. Sawaya, et al. (1999). “An open and closed case for all polymerases.” Structure 7(2): R31–5.

    Article  PubMed  CAS  Google Scholar 

  • Dvorin, J. D., P. Bell, et al. (2002). “Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import.” J Virol 76(23): 12087–96.

    Article  PubMed  CAS  Google Scholar 

  • Esnouf, R., J. Ren, et al. (1995). “Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors.” Nat Struct Biol 2(4): 303–8.

    Article  PubMed  CAS  Google Scholar 

  • Furfine, E. S. and J. E. Reardon (1991). “Reverse transcriptase. RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities.” J Biol Chem 266(1): 406–12.

    PubMed  CAS  Google Scholar 

  • Gao, H. Q., S. G. Sarafianos, et al. (2001). “RNase H cleavage of the 5Ęą end of the human immunodeficiency virus type 1 genome.” J Virol 75(23): 11874–80.

    Article  PubMed  CAS  Google Scholar 

  • Garforth, S. J., T. W. Kim, et al. (2007). “Site-directed mutagenesis in the fingers subdomain of HIV-1 reverse transcriptase reveals a specific role for the beta3-beta4 hairpin loop in dNTP selection.” J Mol Biol 365(1): 38–49.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, M., P. S. Jacques, et al. (1996). “Alterations to the primer grip of p66 HIV-1 reverse transcriptase and their consequences for template-primer utilization.” Biochemistry 35(26): 8553–62.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, M., J. Williams, et al. (1997). “Mutating a conserved motif of the HIV-1 reverse transcriptase palm subdomain alters primer utilization.” Biochemistry 36(19): 5758–68.

    Article  PubMed  CAS  Google Scholar 

  • Godet, J., H. de Rocquigny, et al. (2006). “During the early phase of HIV-1 DNA synthesis, nucleocapsid protein directs hybridization of the TAR complementary sequences via the ends of their double-stranded stem.” J Mol Biol 356(5): 1180–92.

    Article  PubMed  CAS  Google Scholar 

  • Goel, R., W. A. Beard, et al. (1993). “Structure/function studies of HIV-1(1) reverse transcriptase: dimerization-defective mutant L289K.” Biochemistry 32(48): 13012–8.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt, V., J. C. Paillart, et al. (2004). “Structural variability of the initiation complex of HIV-1 reverse transcription.” J Biol Chem 279(34): 35923–31.

    Article  PubMed  CAS  Google Scholar 

  • Golinelli, M. P. and S. H. Hughes (2003). “Secondary structure in the nucleic acid affects the rate of HIV-1 nucleocapsid-mediated strand annealing.” Biochemistry 42(27): 8153–62.

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan, V., J. A. Peliska, et al. (1992). “Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities.” Proc Natl Acad Sci USA 89(22): 10763–7.

    Article  PubMed  CAS  Google Scholar 

  • Gotte, M. (2006). “Effects of nucleotides and nucleotide analogue inhibitors of HIV-1 reverse transcriptase in a ratchet model of polymerase translocation.” Curr Pharm Des 12(15): 1867–77.

    Article  PubMed  CAS  Google Scholar 

  • Gotte, M., M. Kameoka, et al. (2001). “Analysis of efficiency and fidelity of HIV-1 (+)-strand DNA synthesis reveals a novel rate-limiting step during retroviral reverse transcription.” J Biol Chem 276(9): 6711–9.

    Article  PubMed  CAS  Google Scholar 

  • Gotte, M., G. Maier, et al. (1998). “Localization of the active site of HIV-1 reverse transcriptase-associated RNase H domain on a DNA template using site-specific generated hydroxyl radicals.” J Biol Chem 273(17): 10139–46.

    Article  PubMed  CAS  Google Scholar 

  • Guajardo, R. and R. Sousa (1997). “A model for the mechanism of polymerase translocation.” J Mol Biol 265(1): 8–19.

    Article  PubMed  CAS  Google Scholar 

  • Guo, F., S. Cen, et al. (2006). “Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication.” J Virol 80(23): 11710–22.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J., T. Wu, et al. (2000). “Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer.” J Virol 74(19): 8980–8.

    Article  PubMed  CAS  Google Scholar 

  • Hang, J. Q., S. Rajendran, et al. (2004). “Activity of the isolated HIV RNase H domain and specific inhibition by N-hydroxyimides.” Biochem Biophys Res Commun 317(2): 321–9.

    Article  PubMed  CAS  Google Scholar 

  • Harris, D., R. Lee, et al. (1998). “The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer.” Biochemistry 37(17): 5903–8.

    Article  PubMed  CAS  Google Scholar 

  • Hsiou, Y., J. Ding, et al. (1996). “Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms.” Structure 4(7): 853–60.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., R. Chopra, et al. (1998). “Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance.” Science 282(5394): 1669–75.

    Article  PubMed  CAS  Google Scholar 

  • Huber, H. E. and C. C. Richardson (1990). “Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase.” J Biol Chem 265(18): 10565–73.

    PubMed  CAS  Google Scholar 

  • Hungnes, O., E. Tjotta, et al. (1991). “The plus strand is discontinuous in a subpopulation of unintegrated HIV-1 DNA.” Arch Virol 116(1–4): 133–41.

    Article  PubMed  CAS  Google Scholar 

  • Hungnes, O., E. Tjotta, et al. (1992). “Mutations in the central polypurine tract of HIV-1 result in delayed replication.” Virology 190(1): 440–2.

    Article  PubMed  CAS  Google Scholar 

  • Isel, C., C. Ehresmann, et al. (1995). “Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer).” J Mol Biol 247(2): 236–50.

    Article  PubMed  CAS  Google Scholar 

  • Isel, C., R. Marquet, et al. (1993). “Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription.” J Biol Chem 268(34): 25269–72.

    PubMed  CAS  Google Scholar 

  • Iwatani, Y., A. E. Rosen, et al. (2003). “Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions.” J Biol Chem 278(16): 14185–95.

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Molina, A., J. Ding, et al. (1993). “Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA.” Proc Natl Acad Sci USA 90(13): 6320–4.

    Article  PubMed  CAS  Google Scholar 

  • Jacques, P. S., B. M. Wohrl, et al. (1994a). “Modulation of HIV-1 reverse transcriptase function in “selectively deleted” p66/p51 heterodimers.” J Biol Chem 269(2): 1388–93.

    PubMed  CAS  Google Scholar 

  • Jacques, P. S., B. M. Wohrl, et al. (1994b). “Mutating the “primer grip” of p66 HIV-1 reverse transcriptase implicates tryptophan-229 in template-primer utilization.” J Biol Chem 269(42): 26472–8.

    PubMed  CAS  Google Scholar 

  • Javanbakht, H., R. Halwani, et al. (2003). “The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly.” J Biol Chem 278(30): 27644–51.

    Article  PubMed  CAS  Google Scholar 

  • Jones, F. D. and S. H. Hughes (2007). “In vitro analysis of the effects of mutations in the G-tract of the human immunodeficiency virus type 1 polypurine tract on RNase H cleavage specificity.” Virology 360(2): 341–9.

    Article  PubMed  CAS  Google Scholar 

  • Julias, J. G., M. J. McWilliams, et al. (2004). “Effects of mutations in the G tract of the human immunodeficiency virus type 1 polypurine tract on virus replication and RNase H cleavage.” J Virol 78(23): 13315–24.

    Article  PubMed  CAS  Google Scholar 

  • Kaminska, M., V. Shalak, et al. (2007). “Viral hijacking of mitochondrial lysyl-tRNA synthetase.” J Virol 81(1): 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. M., J. K. Wakefield, et al. (1996). “Mutations in both the U5 region and the primer-binding site influence the selection of the tRNA used for the initiation of HIV-1 reverse transcription.” Virology 222(2): 401–14.

    Article  PubMed  CAS  Google Scholar 

  • Kankia, B. I. and K. Musier-Forsyth (2007). “The HIV-1 central DNA flap region contains a “flapping” third strand.” Biophys Chem 127(1–2): 64–8.

    Article  PubMed  CAS  Google Scholar 

  • Kao, H. I., J. Veeraraghavan, et al. (2004). “On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing.” J Biol Chem 279(15): 15014–24.

    Article  PubMed  CAS  Google Scholar 

  • Katayanagi, K., M. Miyagawa, et al. (1990). “Three-dimensional structure of ribonuclease H from E. coli.” Nature 347(6290): 306–9.

    Article  PubMed  CAS  Google Scholar 

  • Kensch, O., T. Restle, et al. (2000). “Temperature-dependent equilibrium between the open and closed conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling.” J Mol Biol 301(4): 1029–39.

    Article  PubMed  CAS  Google Scholar 

  • Khorchid, A., H. Javanbakht, et al. (2000). “Sequences within Pr160gag-pol affecting the selective packaging of primer tRNA(Lys3) into HIV-1.” J Mol Biol 299(1): 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Klarmann, G. J., B. M. Eisenhauer, et al. (2007). “Investigating the “steric gate” of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase by targeted insertion of unnatural amino acids.” Biochemistry 46(8): 2118–26.

    Article  PubMed  CAS  Google Scholar 

  • Klarmann, G. J., B. M. Eisenhauer, et al. (2004). “Site- and subunit-specific incorporation of unnatural amino acids into HIV-1 reverse transcriptase.” Protein Expr Purif 38(1): 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kleiman, L., R. Halwani, et al. (2004). “The selective packaging and annealing of primer tRNALys3 in HIV-1.” Curr HIV Res 2(2): 163–75.

    Article  PubMed  CAS  Google Scholar 

  • Kohlstaedt, L. A., J. Wang, et al. (1992). “Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor.” Science 256(5065): 1783–90.

    Article  PubMed  CAS  Google Scholar 

  • Kovaleski, B. J., R. Kennedy, et al. (2006). “In vitro characterization of the interaction between HIV-1 Gag and human lysyl-tRNA synthetase.” J Biol Chem 281(28): 19449–56.

    Article  PubMed  CAS  Google Scholar 

  • Kvaratskhelia, M., S. R. Budihas, et al. (2002). “Pre-existing distortions in nucleic acid structure aid polypurine tract selection by HIV-1 reverse transcriptase.” J Biol Chem 277(19): 16689–96.

    Article  PubMed  CAS  Google Scholar 

  • Lanchy, J. M., C. Ehresmann, et al. (1996). “Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription.” Embo J 15(24): 7178–87.

    PubMed  CAS  Google Scholar 

  • Landick, R. (2004). “Active-site dynamics in RNA polymerases.” Cell 116(3): 351–3.

    Article  PubMed  CAS  Google Scholar 

  • Lavigne, M. and H. Buc (1999). “Compression of the DNA minor groove is responsible for termination of DNA synthesis by HIV-1 reverse transcriptase.” J Mol Biol 285(3): 977–95.

    Article  PubMed  CAS  Google Scholar 

  • Lavigne, M., L. Polomack, et al. (2001). “DNA synthesis by HIV-1 reverse transcriptase at the central termination site: a kinetic study.” J Biol Chem 276(33): 31429–38.

    Article  PubMed  CAS  Google Scholar 

  • Lavigne, M., P. Roux, et al. (1997). “DNA curvature controls termination of plus strand DNA synthesis at the centre of HIV-1 genome.” J Mol Biol 266(3): 507–24.

    Article  PubMed  CAS  Google Scholar 

  • Le Grice, S. F. (2003). ““In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons.” Biochemistry 42(49): 14349–55.

    Article  PubMed  CAS  Google Scholar 

  • Le Grice, S. F., T. Naas, et al. (1991). “Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase.” Embo J 10(12): 3905–11.

    PubMed  CAS  Google Scholar 

  • Lener, D., S. R. Budihas, et al. (2002). “Mutating conserved residues in the ribonuclease H domain of Ty3 reverse transcriptase affects specialized cleavage events.” J Biol Chem 277(29): 26486–95.

    Article  PubMed  CAS  Google Scholar 

  • Levin, J. G., J. Guo, et al. (2005). “Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism.” Prog Nucleic Acid Res Mol Biol 80: 217–86.

    Article  PubMed  CAS  Google Scholar 

  • Liang, C., X. Li, et al. (1997). “The importance of the A-rich loop in human immunodeficiency virus type 1 reverse transcription and infectivity.” J Virol 71(8): 5750–7.

    PubMed  CAS  Google Scholar 

  • Limon, A., N. Nakajima, et al. (2002). “Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap.” J Virol 76(23): 12078–86.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H. W., G. Cosa, et al. (2005). “Single-molecule FRET studies of important intermediates in the nucleocapsid-protein-chaperoned minus-strand transfer step in HIV-1 reverse transcription.” Biophys J 89(5): 3470–9.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H. W., Y. Zeng, et al. (2007). “Insights on the role of nucleic acid/protein interactions in chaperoned nucleic acid rearrangements of HIV-1 reverse transcription.” Proc Natl Acad Sci USA 104(13): 5261–7.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, D. M., A. Aitken, et al. (1988). “HIV-1 reverse transcriptase: crystallization and analysis of domain structure by limited proteolysis.” Biochemistry 27(25): 8884–9.

    Article  PubMed  CAS  Google Scholar 

  • Luo, G. X. and J. Taylor (1990). “Template switching by reverse transcriptase during DNA synthesis.” J Virol 64(9): 4321–8.

    PubMed  CAS  Google Scholar 

  • Ma, J. B., Y. R. Yuan, et al. (2005). “Structural basis for 5Ęą-end-specific recognition of guide RNA by the A. fulgidus Piwi protein.” Nature 434(7033): 666–70.

    Article  PubMed  CAS  Google Scholar 

  • Majumdar, C., J. Abbotts, et al. (1988). “Studies on the mechanism of human immunodeficiency virus reverse transcriptase. Steady-state kinetics, processivity, and polynucleotide inhibition.” J Biol Chem 263(30): 15657–65.

    PubMed  CAS  Google Scholar 

  • Mak, J. and L. Kleiman (1997). “Primer tRNAs for reverse transcription.” J Virol 71(11): 8087–95.

    PubMed  CAS  Google Scholar 

  • Marchand, B., E. P. Tchesnokov, et al. (2007). “The pyrophosphate analogue foscarnet traps the pre-translocational state of HIV-1 reverse transcriptase in a Brownian ratchet model of polymerase translocation.” J Biol Chem 282(5): 3337–46.

    Article  PubMed  CAS  Google Scholar 

  • Marquet, R., C. Isel, et al. (1995). “tRNAs as primer of reverse transcriptases.” Biochimie 77(1–2): 113–24.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Hernandez, A. M., E. Domingo, et al. (1996). “Human immunodeficiency virus type 1 reverse transcriptase: role of Tyr115 in deoxynucleotide binding and misinsertion fidelity of DNA synthesis.” Embo J 15(16): 4434–42.

    PubMed  CAS  Google Scholar 

  • McWilliams, M. J., J. G. Julias, et al. (2003). “Mutations in the 5Ęą end of the human immunodeficiency virus type 1 polypurine tract affect RNase H cleavage specificity and virus titer.” J Virol 77(20): 11150–7.

    Article  PubMed  CAS  Google Scholar 

  • Menendez-Arias, L., A. Abraha, et al. (2001). “Functional characterization of chimeric reverse transcriptases with polypeptide subunits of highly divergent HIV-1 group M and O strains.” J Biol Chem 276(29): 27470–9.

    Article  PubMed  CAS  Google Scholar 

  • Miles, L. R., B. E. Agresta, et al. (2005). “Effect of polypurine tract (PPT) mutations on human immunodeficiency virus type 1 replication: a virus with a completely randomized PPT retains low infectivity.” J Virol 79(11): 6859–67.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. T., A. Khvorova, et al. (2004). “Synthetic tRNALys,3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes.” Nucleic Acids Res 32(15): 4687–95.

    Article  PubMed  CAS  Google Scholar 

  • Molling, K., D. P. Bolognesi, et al. (1971). “Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids.” Nat New Biol 234(51): 240–3.

    PubMed  CAS  Google Scholar 

  • Mulky, A., S. G. Sarafianos, et al. (2005). “Identification of amino acid residues in the human immunodeficiency virus type-1 reverse transcriptase tryptophan-repeat motif that are required for subunit interaction using infectious virions.” J Mol Biol 349(4): 673–84.

    Article  PubMed  CAS  Google Scholar 

  • Muller, B., T. Restle, et al. (1989). “Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli.” J Biol Chem 264(24): 13975–8.

    PubMed  CAS  Google Scholar 

  • Ni, N., W. Xu, et al. (2007). “Importance of A-loop complementarity with tRNAHis anticodon for continued selection of tRNAHis as the HIV reverse transcription primer.” Virol J 4: 4.

    Article  PubMed  CAS  Google Scholar 

  • Nowotny, M., S. A. Gaidamakov, et al. (2005). “Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.” Cell 121(7): 1005–16.

    Article  PubMed  CAS  Google Scholar 

  • Nowotny, M. and W. Yang (2006). “Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release.” Embo J 25(9): 1924–33.

    Article  PubMed  CAS  Google Scholar 

  • Ooms, M., D. Cupac, et al. (2007). “The availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation.” Nucleic Acids Res 35(5): 1649–59.

    Article  PubMed  CAS  Google Scholar 

  • Operario, D. J., M. Balakrishnan, et al. (2006). “Reduced dNTP interaction of human immunodeficiency virus type 1 reverse transcriptase promotes strand transfer.” J Biol Chem 281(43): 32113–21.

    Article  PubMed  CAS  Google Scholar 

  • Palaniappan, C., M. Wisniewski, et al. (1997). “Mutations within the primer grip region of HIV-1 reverse transcriptase result in loss of RNase H function.” J Biol Chem 272(17): 11157–64.

    Article  PubMed  CAS  Google Scholar 

  • Peliska, J. A. and S. J. Benkovic (1992). “Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase.” Science 258(5085): 1112–8.

    Article  PubMed  CAS  Google Scholar 

  • Powell, M. D., M. Ghosh, et al. (1997). “Alanine-scanning mutations in the “primer grip” of p66 HIV-1 reverse transcriptase result in selective loss of RNA priming activity.” J Biol Chem 272(20): 13262–9.

    Article  PubMed  CAS  Google Scholar 

  • Powell, M. D. and J. G. Levin (1996). “Sequence and structural determinants required for priming of plus-strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract.” J Virol 70(8): 5288–96.

    PubMed  CAS  Google Scholar 

  • Pullen, K. A., A. J. Rattray, et al. (1993). “The sequence features important for plus strand priming by human immunodeficiency virus type 1 reverse transcriptase.” J Biol Chem 268(9): 6221–7.

    PubMed  CAS  Google Scholar 

  • Rausch, J. W. and S. F. Le Grice (2007). “Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis.” Nucleic Acids Res 35(1): 256–68.

    Article  PubMed  CAS  Google Scholar 

  • Rausch, J. W., J. Qu, et al. (2003). “Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection.” Proc Natl Acad Sci USA 100(20): 11279–84.

    Article  PubMed  CAS  Google Scholar 

  • Restle, T., B. Muller, et al. (1990). “Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention.” J Biol Chem 265(16): 8986–8.

    PubMed  CAS  Google Scholar 

  • Restle, T., B. Muller, et al. (1992). “RNase H activity of HIV reverse transcriptases is confined exclusively to the dimeric forms.” FEBS Lett 300(1): 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Rice, P. A. and T. A. Baker (2001). “Comparative architecture of transposase and integrase complexes.” Nat Struct Biol 8(5): 302–7.

    Article  CAS  Google Scholar 

  • Rittinger, K., G. Divita, et al. (1995). “Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors.” Proc Natl Acad Sci USA 92(17): 8046–9.

    Article  PubMed  CAS  Google Scholar 

  • Robson, N. D. and A. Telesnitsky (2000). “Selection of optimal polypurine tract region sequences during Moloney murine leukemia virus replication.” J Virol 74(22): 10293–303.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, D. W., S. J. Gamblin, et al. (1995). “The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1.” Proc Natl Acad Sci USA 92(4): 1222–6.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Barrios, F., C. Perez, et al. (2001). “Identification of a putative binding site for [2Ęą,5Ęą-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3Ęą-spiro-5''- (4''-amino-1'',2''-oxathiole-2'',2''-dioxide)thymine (TSAO) derivatives at the p51-p66 interface of HIV-1 reverse transcriptase.” J Med Chem 44(12): 1853–65.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell, P. J., S. Berger, et al. (2003). “Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes.” Proc Natl Acad Sci USA 100(4): 1655–60.

    Article  PubMed  CAS  Google Scholar 

  • Rumbaugh, J. A., G. M. Fuentes, et al. (1998). “Processing of an HIV replication intermediate by the human DNA replication enzyme FEN1.” J Biol Chem 273(44): 28740–5.

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos, S. G., K. Das, et al. (1999). “Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site.” Chem Biol 6(5): R137–46.

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos, S. G., K. Das, et al. (2001). “Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA.” Embo J 20(6): 1449–61.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, S. J., M. Zhang, et al. (2006). “Sequence, distance, and accessibility are determinants of 5Ęą-end-directed cleavages by retroviral RNases H.” J Biol Chem 281(4): 1943–55.

    Article  PubMed  CAS  Google Scholar 

  • Shaw-Reid, C. A., V. Munshi, et al. (2003). “Inhibition of HIV-1 ribonuclease H by a novel diketo acid, 4-[5-(benzoylamino)thien-2-yl]-2,4-dioxobutanoic acid.” J Biol Chem 278(5): 2777–80.

    Article  PubMed  CAS  Google Scholar 

  • Sirven, A., F. Pflumio, et al. (2000). “The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells.” Blood 96(13): 4103–10.

    PubMed  CAS  Google Scholar 

  • Smith, C. M., J. S. Smith, et al. (1999). “RNase H requirements for the second strand transfer reaction of human immunodeficiency virus type 1 reverse transcription.” J Virol 73(8): 6573–81.

    PubMed  CAS  Google Scholar 

  • Song, J. J., S. K. Smith, et al. (2004). “Crystal structure of Argonaute and its implications for RISC slicer activity.” Science 305(5689): 1434–7.

    Article  PubMed  CAS  Google Scholar 

  • Song, M., M. Balakrishnan, et al. (2006). “Stimulation of HIV-1 minus strand strong stop DNA transfer by genomic sequences 3Ęą of the primer binding site.” J Biol Chem 281(34): 24227–35.

    Article  PubMed  CAS  Google Scholar 

  • Spence, R. A., W. M. Kati, et al. (1995). “Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors.” Science 267(5200): 988–93.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, S., N. Sluis-Cremer, et al. (2006). “Dimerization of human immunodeficiency virus type 1 reverse transcriptase as an antiviral target.” Curr Pharm Des 12(15): 1879–94.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T. A. (1993). “DNA- and RNA-dependent DNA polymerases.” Curr Opin Struct Biol 3: 31–38.

    Article  CAS  Google Scholar 

  • Steitz, T. A. (1998). “A mechanism for all polymerases.” Nature 391(6664): 231–2.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T. A. (1999). “DNA polymerases: structural diversity and common mechanisms.” J Biol Chem 274(25): 17395–8.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T. A. (2004). “The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase.” Curr Opin Struct Biol 14(1): 4–9.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T. A., S. J. Smerdon, et al. (1994). “A unified polymerase mechanism for nonhomologous DNA and RNA polymerases.” Science 266(5193): 2022–5.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T. A. and J. A. Steitz (1993). “A general two-metal-ion mechanism for catalytic RNA.” Proc Natl Acad Sci USA 90(14): 6498–502.

    Article  PubMed  CAS  Google Scholar 

  • Steitz, T. A. and Y. W. Yin (2004). “Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases.” Philos Trans R Soc Lond B Biol Sci 359(1441): 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Stetor, S. R., J. W. Rausch, et al. (1999). “Characterization of (+) strand initiation and termination sequences located at the center of the equine infectious anemia virus genome.” Biochemistry 38(12): 3656–67.

    Article  PubMed  CAS  Google Scholar 

  • Tachedjian, G., H. E. Aronson, et al. (2003). “Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization.” J Mol Biol 326(2): 381–96.

    Article  PubMed  CAS  Google Scholar 

  • Tan, C. K., J. Zhang, et al. (1991). “Functional characterization of RNA-dependent DNA polymerase and RNase H activities of a recombinant HIV reverse transcriptase.” Biochemistry 30(10): 2651–5.

    Article  PubMed  CAS  Google Scholar 

  • Tantillo, C., J. Ding, et al. (1994). “Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance.” J Mol Biol 243(3): 369–87.

    Article  PubMed  CAS  Google Scholar 

  • Telesnitsky, A. and S. P. Goff (1997). Reverse Transcriptase and the Generation of Retroviral DNA. Retroviruses. J. M. Coffin, S. H. Hughes and H. E. Varmus. Plainview, Cold Spring Harbor Laboratory Press: 121–160.

    Google Scholar 

  • Temiakov, D., V. Patlan, et al. (2004). “Structural basis for substrate selection by t7 RNA polymerase.” Cell 116(3): 381–91.

    Article  PubMed  CAS  Google Scholar 

  • Tisdale, M., T. Schulze, et al. (1991). “Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity.” J Gen Virol 72(Pt 1): 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Tisne, C., B. P. Roques, et al. (2004). “The annealing mechanism of HIV-1 reverse transcription primer onto the viral genome.” J Biol Chem 279(5): 3588–95.

    Article  PubMed  CAS  Google Scholar 

  • Van Maele, B., J. De Rijck, et al. (2003). “Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction.” J Virol 77(8): 4685–94.

    Article  PubMed  CAS  Google Scholar 

  • van Wamel, J. L. and B. Berkhout (1998). “The first strand transfer during HIV-1 reverse transcription can occur either intramolecularly or intermolecularly.” Virology 244(2): 245–51.

    Article  PubMed  Google Scholar 

  • Wang, J., S. J. Smerdon, et al. (1994). “Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer.” Proc Natl Acad Sci USA 91(15): 7242–6.

    Article  PubMed  CAS  Google Scholar 

  • Whitwam, T., M. Peretz, et al. (2001). “Identification of a central DNA flap in feline immunodeficiency virus.” J Virol 75(19): 9407–14.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, M., Y. Chen, et al. (2002). “Substrate requirements for secondary cleavage by HIV-1 reverse transcriptase RNase H.” J Biol Chem 277(32): 28400–10.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, M., C. Palaniappan, et al. (1999). “Mutations in the primer grip region of HIV reverse transcriptase can increase replication fidelity.” J Biol Chem 274(40): 28175–84.

    Article  PubMed  CAS  Google Scholar 

  • Wohrl, B. M., K. J. Howard, et al. (1994). “Alternative modes of polymerization distinguish the subunits of equine infectious anemia virus reverse transcriptase.” J Biol Chem 269(11): 8541–8.

    PubMed  CAS  Google Scholar 

  • Wohrl, B. M., R. Krebs, et al. (1999). “Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate.” J Mol Biol 292(2): 333–44.

    Article  PubMed  CAS  Google Scholar 

  • Wohrl, B. M., R. Krebs, et al. (1997). “Kinetic analysis of four HIV-1 reverse transcriptase enzymes mutated in the primer grip region of p66. Implications for DNA synthesis and dimerization.” J Biol Chem 272(28): 17581–7.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y. and T. H. Eickbush (1990). “Origin and evolution of retroelements based upon their reverse transcriptase sequences.” Embo J 9(10): 3353–62.

    PubMed  CAS  Google Scholar 

  • Yang, W., J. Y. Lee, et al. (2006). “Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.” Mol Cell 22(1): 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Yi-Brunozzi, H. Y. and S. F. Le Grice (2005). “Investigating HIV-1 polypurine tract geometry via targeted insertion of abasic lesions in the (-)-DNA template and (+)-RNA primer.” J Biol Chem 280(20): 20154–62.

    Article  PubMed  CAS  Google Scholar 

  • Yin, Y. W. and T. A. Steitz (2004). “The structural mechanism of translocation and helicase activity in T7 RNA polymerase.” Cell 116(3): 393–404.

    Article  PubMed  CAS  Google Scholar 

  • You, J. C. and C. S. McHenry (1994). “Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription.” J Biol Chem 269(50): 31491–5.

    PubMed  CAS  Google Scholar 

  • Yuan, Y. R., Y. Pei, et al. (2005). “Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage.” Mol Cell 19(3): 405–19.

    Article  PubMed  CAS  Google Scholar 

  • Zennou, V., C. Petit, et al. (2000). “HIV-1 genome nuclear import is mediated by a central DNA flap.” Cell 101(2): 173–85.

    Article  PubMed  CAS  Google Scholar 

  • Zennou, V., C. Serguera, et al. (2001). “The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain.” Nat Biotechnol 19(5): 446–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart F.J. Le Grice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wendeler, M., Miller, J.T., Le Grice, S.F. (2009). Human Immunodeficiency Virus Reverse Transcriptase. In: Raney, K., Gotte, M., Cameron, C. (eds) Viral Genome Replication. Springer, Boston, MA. https://doi.org/10.1007/b135974_19

Download citation

Publish with us

Policies and ethics